ORF522 – Linear and Nonlinear Optimization 12. Introduction to nonlinear optimization

Bartolomeo Stellato — Fall 2022

Homogeneous self-dual embedding

Optimality conditions Primal

minimize $c^T x$ subject to Ax + s = b subject to $A^Ty + c = 0$ s > 0

Optimality conditions

 $\begin{vmatrix} 0 \\ s \end{vmatrix} = \begin{vmatrix} 0 \\ -A \\ c^T \end{vmatrix}$

 $s, y \ge 0$

Dual

maximize $-b^T y$

 $y \ge 0$

$$\begin{bmatrix} A^T \\ 0 \\ b^T \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} c \\ b \\ 0 \end{bmatrix}$$

Any $(x^{\star}, s^{\star}, y^{\star})$ satisfying these conditions is **optimal**

Optimality conditions Primal

minimize $c^T x$ subject to Ax + s = b subject to $A^Ty + c = 0$ s > 0

Optimality conditions

 $\begin{vmatrix} 0 \\ s \\ 0 \end{vmatrix} = \begin{vmatrix} 0 \\ -A \\ c^T \end{vmatrix}$

 $s, y \ge 0$

What happens if the problem is infeasible?

Dual

maximize $-b^T y$

 $y \ge 0$

$$\begin{bmatrix} A^T \\ 0 \\ b^T \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} c \\ b \\ 0 \end{bmatrix}$$

Any $(x^{\star}, s^{\star}, y^{\star})$ satisfying these conditions is **optimal**

Primal

minimize $c^T x$ subject to Ax + s = bs > 0

Alternatives (Farkas lemma) Write feasibility problem and dualize...

- primal feasible: Ax + s = b, $s \ge 0$
- primal infeasible: $A^T y = 0$, $b^T y < 0$, $y \ge 0$

Dual

maximize $-b^T y$ subject to $A^T y + c = 0$ y > 0

Primal

minimize $c^T x$ subject to Ax + s = bs > 0

Alternatives (Farkas lemma) Write feasibility problem and dualize...

- primal feasible: Ax + s = b, $s \ge 0$
- primal infeasible: $A^T y = 0$, $b^T y < 0$, $y \ge 0$ (primal infeasibility certificate)

Dual

maximize $-b^{T}y$ subject to $A^T y + c = 0$ y > 0

Primal

minimize $c^T x$ subject to Ax + s = bs > 0

Alternatives (Farkas lemma) Write feasibility problem and dualize...

- primal feasible: Ax + s = b, $s \ge 0$
- primal infeasible: $A^T y = 0$, $b^T y < 0$, $y \ge 0$ (primal infeasibility certificate)
- dual feasible: $A^T y + c = 0, \quad y \ge 0$
- dual infeasible: $Ax \le 0$, $c^T x < 0$

Dual

maximize $-b^T y$ subject to $A^T y + c = 0$ y > 0

Primal

minimize $c^T x$ subject to Ax + s = bs > 0

Alternatives (Farkas lemma) Write feasibility problem and dualize...

- primal feasible: Ax + s = b, $s \ge 0$
- primal infeasible: $A^T y = 0$, $b^T y < 0$, $y \ge 0$
- dual feasible: $A^T y + c = 0$, $y \ge 0$
- dual infeasible: $A\mathbf{x} \leq 0$, $c^T\mathbf{x} < 0$

Dual

maximize $-b^T y$ subject to $A^T y + c = 0$ y > 0

(primal infeasibility certificate)

(dual infeasibility certificate)

The homogeneous self-dual embedding Derivation

Introduce two new variables $\kappa, \tau \geq 0$

Homogeneous self-dual embedding

 $s, y, \kappa, \tau \ge 0$

The homogeneous self-dual embedding Derivation

Introduce two new variables $\kappa, \tau \geq 0$

Homogeneous self-dual embedding

 $s, y, \kappa, \tau \geq 0$

$$Q = \begin{bmatrix} 0 & A^T & c \\ -A & 0 & b \\ -c^T & -b^T & 0 \end{bmatrix}$$
$$u, v \ge 0 \qquad \qquad u = (x, y, \tau)$$

$$v = (0, s, \kappa)$$

The homogeneous self-dual embedding **Properties** $Q = \begin{bmatrix} 0 & A^T & c \\ -A & 0 & b \\ -c^T & -b^T & 0 \end{bmatrix}$ Qu = v $u, v \ge 0$ $u = (x, y, \tau)$ $v = (0, s, \kappa)$

The homogeneous self-dual embedding **Properties** $Q = \begin{bmatrix} 0 & A^T & c \\ -A & 0 & b \\ -c^T & -b^T & 0 \end{bmatrix}$ Qu = vu, v > 0 $u = (x, y, \tau)$ $v = (0, s, \kappa)$ Matrix

- Q is skew-symmetric: $Q^T = -Q \implies u^T Q u = 0$

• $u \perp v$ proof $Qu - v = 0 \Rightarrow u^T Qu - u^T v = 0 \Rightarrow u^T v = 0$

The homogeneous self-dual embedding **Properties** $Q = \begin{bmatrix} 0 & A^T & c \\ -A & 0 & b \\ -c^T & -b^T & 0 \end{bmatrix}$ Qu = vu, v > 0 $u = (x, y, \tau)$ $v = (0, s, \kappa)$ Matrix • Q is skew-symmetric: $Q^T = -Q \implies u^T Q u = 0$ • $u \perp v$ proof $Qu - v = 0 \Rightarrow u^T Qu - u^T v = 0 \Rightarrow u^T v = 0$

Homogeneous (u, v) satisfy $Qu = v, (v, u) \ge 0 \Rightarrow \alpha(u, v)$ with $\alpha \ge 0$ feasible

The homogeneous self-dual embedding **Properties** $Q = \begin{bmatrix} 0 & A^T & c \\ -A & 0 & b \\ -c^T & -b^T & 0 \end{bmatrix}$ Qu = vu, v > 0 $u = (x, y, \tau)$ $v = (0, s, \kappa)$ Matrix • Q is skew-symmetric: $Q^T = -Q \implies u^T Q u = 0$ • $u \perp v$ proof $Qu - v = 0 \Rightarrow u^T Qu - u^T v = 0 \Rightarrow u^T v = 0$

Homogeneous (u, v) satisfy $Qu = v, (v, u) \ge 0 \Rightarrow \alpha(u, v)$ with $\alpha \ge 0$ feasible

Always feasible $\alpha = 0 \implies (0,0)$ is feasible

The homogeneous self-dual embedding Find x, s, y, κ, τ such that $\begin{bmatrix} 0 \\ s \\ \kappa \end{bmatrix} = \begin{bmatrix} 0 & A^T & c \\ -A & 0 & b \\ -c^T & -b^T & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ \tau \end{bmatrix}$ **Outcomes** $s, y, \kappa, \tau \ge 0$

The homogeneous self-dual embedding **Outcomes** Find x, s, y, κ, τ such that $\begin{bmatrix} 0 \\ s \\ \kappa \end{bmatrix} = \begin{bmatrix} 0 & A^T & c \\ -A & 0 & b \\ -c^T & -b^T & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ \tau \end{bmatrix}$ $s, y, \kappa, \tau \ge 0$

Case 1: feasibility $\tau > 0, \kappa = 0$ define $(\hat{x}, \hat{s}, \hat{y}) = (x^* / \tau, s^* / \tau, y^* / \tau)$

The homogeneous self-dual embedding **Outcomes** Find x, s, y, κ, τ such that $\begin{bmatrix} 0 \\ s \\ \kappa \end{bmatrix} = \begin{bmatrix} 0 & A^T & c \\ -A & 0 & b \\ -c^T & -b^T & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ \tau \end{bmatrix}$ $s, y, \kappa, \tau \ge 0$

Case 1: feasibility $\tau > 0, \kappa = 0$ define $(\hat{x}, \hat{s}, \hat{y}) = (x^* / \tau, \hat{y})$ $\bigcap - \Lambda^T \hat{u} \perp c$

$$\hat{s} = -A\hat{x} + b \qquad \hat{s} \ge 0, \quad \hat{y} \ge 0, \quad \hat{s}^T\hat{y} = 0$$
$$\hat{s} = -A\hat{x} + b$$

$$s^{\star}/\tau, y^{\star}/\tau)$$

The homogeneous self-dual embedding **Outcomes** Find x, s, y, κ, τ such that $\begin{bmatrix} 0 \\ s \\ \kappa \end{bmatrix} = \begin{bmatrix} 0 & A^T & c \\ -A & 0 & b \\ -c^T & -b^T & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ \tau \end{bmatrix}$ $s, y, \kappa, \tau \ge 0$

Case 1: feasibility $\tau > 0, \kappa = 0$ define $(\hat{x}, \hat{s}, \hat{y}) = (x^* / \tau, \hat{y})$ $0 = A^T \hat{y} + c$ $\hat{s} = -A\hat{x} + b$ $\hat{s} > 0.$

 \rightarrow $(\hat{x}, \hat{s}, \hat{y})$ is a **solution** to the original problem

$$s^{\star}/\tau, y^{\star}/\tau)$$

$$, \quad \hat{y} \ge 0, \quad \hat{s}^T \hat{y} = 0$$

The homogeneous self-dual embedding **Outcomes** Find x, s, y, κ, τ such that $\begin{bmatrix} 0 \\ s \\ \kappa \end{bmatrix} = \begin{bmatrix} 0 & A^T & c \\ -A & 0 & b \\ -c^T & -b^T & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ \tau \end{bmatrix}$ $s, y, \kappa, \tau \geq 0$

Case 2: infeasibility $\tau = 0, \kappa > 0 \longrightarrow c^T x + b^T y < 0$ (impossible). Must have infeasibility

The homogeneous self-dual embedding **Outcomes** Find x, s, y, κ, τ such that $\begin{bmatrix} 0 \\ s \\ \kappa \end{bmatrix} = \begin{bmatrix} 0 & A^T & c \\ -A & 0 & b \\ -c^T & -b^T & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ \tau \end{bmatrix}$ $s, y, \kappa, \tau \geq 0$

Case 2: infeasibility $\tau = 0, \kappa > 0 \longrightarrow c^T x + b^T y < 0$ (impossible). Must have infeasibility If $b^T y < 0$ then $\hat{y} = y/(-b^T y)$ is a certificate of primal infeasibility

 $A^T \hat{y} = 0, \quad b^T \hat{y} = -1 < 0, \quad \hat{y} > 0$

The homogeneous self-dual embedding **Outcomes** Find x, s, y, κ, τ such that $\begin{bmatrix} 0 \\ s \\ \kappa \end{bmatrix} = \begin{bmatrix} 0 & A^T & c \\ -A & 0 & b \\ -c^T & -b^T & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ \tau \end{bmatrix}$ $s, y, \kappa, \tau \geq 0$

Case 2: infeasibility $\tau = 0, \kappa > 0 \longrightarrow c^T x + b^T y < 0$ (impossible). Must have infeasibility If $b^T y < 0$ then $\hat{y} = y/(-b^T y)$ is a certificate of primal infeasibility $A^T \hat{y} = 0, \quad b^T \hat{y} = -1 < 0, \quad \hat{y} > 0$

If $c^T x < 0$ then $\hat{x} = x/(-c^T x)$ is a certificate of dual infeasibility $A\hat{x} \le 0, \quad c^T\hat{x} = -1 < 0$

Linear complementarity problem

$$Qu = v$$
$$u^T v = 0$$
$$u, v \ge 0$$

Equations

$$h(u, v) = \begin{bmatrix} Qu - v \\ UV\mathbf{1} \end{bmatrix} = 0$$
$$u, v \ge 0$$

Linear complementarity problem

Equations

$$h(u, v) = \begin{bmatrix} Qu - v \\ UV\mathbf{1} \end{bmatrix} = 0$$
$$u, v \ge 0$$

Directions

$$r_e = Qu - v$$
$$\mu = (u^T v)/d$$

Linear complementarity problem

Line search to enforce u, v > 0 $(u, v) \leftarrow (u, v) + \alpha(\Delta u, \Delta v)$

Equations

$$h(u, v) = \begin{bmatrix} Qu - v \\ UV\mathbf{1} \end{bmatrix} = 0$$
$$u, v \ge 0$$

Directions

$$-r_e \qquad \qquad r_e = Qu - v$$
$$V\mathbf{1} + \sigma\mu\mathbf{1} \qquad \qquad \mu = (u^T v)/d$$

Linear complementarity problem

$$\begin{bmatrix} Q & -I \\ V & U \end{bmatrix} \begin{bmatrix} \Delta u \\ \Delta v \end{bmatrix} = \begin{bmatrix} -r_e \\ -UV\mathbf{1} + \sigma\mu\mathbf{1} \end{bmatrix} \qquad \begin{array}{c} r_e = Qu - v \\ \mu = (u^T v)/d \end{array}$$

Equations

$$h(u, v) = \begin{bmatrix} Qu - v \\ UV\mathbf{1} \end{bmatrix} = 0$$
$$u, v \ge 0$$

Directions

Line search to enforce u, v > 0 $(u, v) \leftarrow (u, v) + \alpha(\Delta u, \Delta v)$

Interior-point methods can solve linear complementarity problems

Today's lecture [Chapter 2-4 and 6, CO] [Chapter A and B, FCA]

- Nonlinear optimization
- Examples
- Convex analysis review
- Convex optimization

 \cap

What if the problem is no longer linear?

Nonlinear optimization

- minimize f(x)subject to $g_i(x)$
- $x = (x_1, \ldots, x_n)$ Variables
- $f: \mathbf{R}^n \to \mathbf{R}$ Nonlinear objective function
- $g_i: \mathbf{R}^n \to \mathbf{R}$ Nonlinear constraints functions

Feasible set $C = \{ x \mid g_i(x) \le 0, \quad i = 1, \dots, m \}$

$$x) \le 0, \quad i = 1, \dots, m$$

Small example

minimize subject to

$$0.5x_1^2 + 0.25x_2^2$$

$$e^{x_1} - 2 - x_2 \le 0$$

$$(x_1 - 1)^2 + x_2 - 3 \le 0$$

$$x_1 \ge 0$$

$$x_2 \ge 1$$

Contour plot has curves (no longer lines)

Feasible set is no longer a polyhedron

Integer optimization It's still nonlinear optimization

 $\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & x \in \mathbf{Z} \end{array}$

Integer optimization It's still nonlinear optimization

We cannot solve most nonlinear optimization problems

Examples of (solvable) nonlinear optimization

Regression

Goal minimize ||Ax - b||

Regression

linear optimization 1-norm or ∞ -norm $||Ax - b||_2^2 = \sum_i (f(z_i) - y_i)^2$ least-squares 2-norm

Goal minimize ||Ax - b||

Sparse regression

Regressor selection

minimize $||Ax - b||_2^2$ subject to $card(x) \le k$

(very hard)

Sparse regression

Regressor selection

minimize $||Ax - b||_2^2$ subject to $card(x) \le k$

(very hard)

Add regularization to the objective

Regularized regression (ridge) minimize $||Ax - b||_2^2 + \gamma ||x||_2^2$

Regularized regression (lasso) minimize $||Ax - b||_2^2 + \gamma ||x||_1$

Lasso vs ridge regression **Regularized regression (ridge) Regularized regression (lasso)** minimize $||Ax - b||_2^2 + \gamma ||x||_1$ minimize $||Ax - b||_2^2 + \gamma ||x||_2^2$

Regularization paths

 x_i is fraction of money invested in asset i p_i is the relative price change of asset i

 \cap

 x_i is fraction of money invested in asset i p_i is the relative price change of asset i

set i

 \cap

 x_i is fraction of money invested in asset i p_i is the relative price change of asset i

Returns $p^T x$

p random variable: mean μ , covariance Σ

- p random variable: mean μ , covariance Σ
 - **Portfolio optimization**
 - $x \ge 0$
 - maximize $\mu^T x \gamma x^T \Sigma x$ subject to $\mathbf{1}^T x = 1$

- p random variable: mean μ , covariance Σ
 - **Portfolio optimization**
 - $x \ge 0$
- maximize $\mu^T x \gamma x^T \Sigma x$ subject to $\mathbf{1}^T x = 1$ Expected return

- p random variable: mean μ , covariance Σ
 - **Portfolio optimization**
 - **Risk** $x \ge 0$
- maximize $\mu^T x \gamma x^T \Sigma x$ Expected subject to $\mathbf{1}^T x = 1$ return

- p random variable: mean μ , covariance Σ
 - **Portfolio optimization**
- Expected return

Convex analysis review

Extended real-value functions

Extended-value extension

Always possible to evaluate functions $\operatorname{dom} \tilde{f} = \{ x \mid \tilde{f}(x) < \infty \}$

f(x) on dom f

 $\tilde{f}(x) = \begin{cases} f(x) & x \in \mathbf{dom}f \\ \infty & x \notin \mathbf{dom}f \end{cases}$

Indicator functions

Indicator function

Constrained form minimize f(x)subject to $x \in C$

$$=\begin{cases} 0 & x \in C \\ \infty & x \notin C \end{cases}$$

Unconstrained form minimize $f(x) + \mathcal{I}_C(x)$

Convex set Definition

For any $x, y \in C$ and any $\alpha \in [0, \infty)$

Convex

Examples

- \mathbf{R}^n
- Hyperplanes
- Hyperspheres
- Polyhedra

$$0,1] \qquad \alpha x + (1-\alpha)y \in C$$

Not convex

Examples

- Cardinality constraint card(x) ≤ k
 Zⁿ
- Any disjoint set

Convex combinations

Convex combination

$\alpha_1 x_1 + \cdots + \alpha_k x_k$ for any x_1, \ldots, x_k and $\alpha_1, \ldots, \alpha_k$ such that $\alpha_i \ge 0, \sum_{i=1}^k \alpha_i = 1$

Convex combinations Convex combination

$\alpha_1 x_1 + \dots + \alpha_k x_k$ for any x_1, \dots, x_k and $\alpha_1, \dots, \alpha_k$ such that $\alpha_i \ge 0, \sum_{i=1}^k \alpha_i = 1$

Convex hull

$$\alpha_i \ge 0, \quad i = 1, \dots, k, \quad \mathbf{1}^T \alpha = 1 \bigg\}$$

Cone $x \in C \implies tx \in C \quad \text{for all} \quad t \ge 0$

26

Cone $x \in C \implies tx \in C \quad \text{for all} \quad t \ge 0$

Convex cone

 $x_1, x_2 \in C \implies t_1 x_1 + t_2 x_2 \in C \text{ for all } t_1, t_2 \ge 0$

Conic combinations

Conic combination

 $\alpha_1 x_1 + \cdots + \alpha_k x_k$ for any x_1, \ldots, x_k and $\alpha_1, \ldots, \alpha_k$ such that $\alpha_i \ge 0$

Conic combinations

Conic combination

 $\alpha_1 x_1 + \cdots + \alpha_k x_k$ for any x_1, \ldots, x_k and $\alpha_1, \ldots, \alpha_k$ such that $\alpha_i \ge 0$

$$\begin{cases} k \\ \sum_{i=1}^{k} \alpha_i x_i \mid x_i \in C, \end{cases}$$

onic hull $\alpha_i \ge 0, \quad i = 1, \dots, k$

Cones Examples

Nonnegative orthant $\mathbf{R}^n_+ = \{ x \in \mathbf{R}^n \mid x \ge 0 \}$

Norm-cone

(if 2-norm, second-order cone) $\{(x,t) \mid ||x|| \le t\}$

Positive semidefinite cone

 $\mathbf{S}_{+}^{n} = \{ X \in \mathbf{S}^{n} \mid z^{T} X z \ge 0, \text{ for all } z \in \mathbf{R}^{n} \}$

Normal cone

For any set C and point $x \in C$, we define

$\mathcal{N}_C(x) = \left\{ g \mid g^T(y - x) \le 0, \quad \text{for all } y \in C \right\}$ $\mathcal{N}_C(x)$ is always convex $\mathcal{N}_C(x)$ \mathcal{X}

Normal cone

For any set C and point $x \in C$, we define

$\mathcal{N}_C(x) = \left\{ g \mid g^T(y - x) \le 0, \quad \text{for all } y \in C \right\}$ $\mathcal{N}_C(x)$ is always convex $\mathcal{N}_C(x)$ What if $x \in intS$? \mathcal{X}

Gradient Derivative If $f(x) : \mathbf{R}^n \to \mathbf{R}^m$ continuously differentiable, we define $Df(x)_{ij} = \frac{\partial f_i(x)}{\partial x_j}, \quad i = 1, \dots, m,$

$$j = 1, \ldots, n$$

Gradient **Derivative** If $f(x) : \mathbf{R}^n \to \mathbf{R}^m$ continuously differentiable, we define $Df(x)_{ij} = \frac{\partial f_i(x)}{\partial x_i}, \quad i = 1, \dots, m, \quad j = 1, \dots, n$

Gradient If $f : \mathbf{R}^n \to \mathbf{R}$, we define $\nabla f(x) = Df(x)^T$

Example $f(x) = (1/2)x^T P x + q^T x$ $\nabla f(x) = Px + q$

Gradient Derivative If $f(x) : \mathbf{R}^n \to \mathbf{R}^m$ continuously differentiable, we define $Df(x)_{ij} = \frac{\partial f_i(x)}{\partial x_i}, \quad i = 1, \dots, m,$

Gradient If $f : \mathbf{R}^n \to \mathbf{R}$, we define $\nabla f(x) = Df(x)^T$

First-order approximation

$$j = 1, \ldots, n$$

Example $f(x) = (1/2)x^T P x + q^T x$ $\nabla f(x) = Px + q$

 $f(y) \approx f(x) + \nabla f(x)^T (y - x)$ (affine function of y)

Hessian

Hessian matrix (second derivative)

If $f(x) : \mathbf{R}^n \to \mathbf{R}$ second-order differentiable, we define $\nabla^2 f(x)_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}, \quad i, j = 1, \dots, n$

Hessian

Hessian matrix (second derivative)

If $f(x) : \mathbf{R}^n \to \mathbf{R}$ second-order differentiable, we define $\nabla^2 f(x)_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}, \quad i, j = 1, \dots, n$

f(x) = (1) $\nabla^2 f(x) = P$

Example

$$(2)x^T P x + q^T x$$

Hessian

Hessian matrix (second derivative)

If $f(x) : \mathbf{R}^n \to \mathbf{R}$ second-order differentiable, we define $\nabla^2 f(x)_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}, \quad i, j = 1, \dots, n$

 $f(x) = (1/2)x^T P x + q^T x$ $\nabla^2 f(x) = P$

Second-order approximation

 $f(y) \approx f(x) + \nabla f(x)^{T} (y - x)$

Example

$$x) + (1/2)(y - x)^T \nabla^2 f(x)(y - x)$$

(quadratic function of y)

Convex optimization

Convex functions Convex function For every $x, y \in \mathbb{R}^n, \ \alpha \in [0, 1]$

$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$

 $\alpha f(x) + (1 - \alpha) f(y)$ (y, f(y)) $f(\alpha x + (1 - \alpha)y)$

Convex functions Convex function For every $x, y \in \mathbf{R}^n, \ \alpha \in [0, 1]$

Concave function f is concave if and only if -f is convex

$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$

 $\alpha f(x) + (1 - \alpha) f(y)$ (y, f(y)) $f(\alpha x + (1 - \alpha)y)$

Convex conditions

First-order

Let f be a continuous differentiable function, then it is convex if and only if dom f is convex and

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$

for all $x, y \in \operatorname{dom} f$

Convex conditions

First-order

Let f be a continuous differentiable function, then it is convex if and only if dom f is convex and

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$

for all $x, y \in \operatorname{dom} f$

Second-order

If f is twice differentiable, then f is convex if and only if dom f is convex and

$$\nabla^2 f(x) \succeq 0$$

for all $x \in \operatorname{dom} f$

Verifying convexity

Basic definition (inequality)

First and second order conditions (gradient, hessian)

Verifying convexity

Basic definition (inequality)

First and second order conditions (gradient, hessian)

Hard!

35

Verifying convexity

Basic definition (inequality)

First and second order conditions (gradient, hessian)

Convex calculus (directly construct convex functions)

- Library of basic functions that are convex/concave \bullet
- Calculus rules or transformations that preserve convexity

Hard!
Verifying convexity

Basic definition (inequality)

First and second order conditions (gradient, hessian)

Convex calculus (directly construct convex functions)

- Library of basic functions that are convex/concave lacksquare
 - Calculus rules or transformations that preserve convexity

Hard!

Easy!

35

Disciplined Convex Programming Convexity by construction

General composition rule

 $h(f_1(x), f_2(x), \ldots, f_k(x))$ is convex when h is convex and for each i

- h is nondecreasing in argument i and f_i is convex, or
- h is nonincreasing in argument i and f_i is concave, or
- f_i is affine

Disciplined Convex Programming Convexity by construction

General composition rule

 $h(f_1(x), f_2(x), \ldots, f_k(x))$ is convex when h is convex and for each i

- h is nondecreasing in argument i and f_i is convex, or
- h is nonincreasing in argument i and f_i is concave, or
- f_i is affine

Only sufficient condition

Disciplined Convex Programming Convexity by construction

General composition rule

 $h(f_1(x), f_2(x), \ldots, f_k(x))$ is convex when h is convex and for each i

- h is nondecreasing in argument i and f_i is convex, or
- h is nonincreasing in argument i and f_i is concave, or
- f_i is affine

More details and examples in ORF523

Only sufficient condition

Check your functions at https://dcp.stanford.edu/

Convex optimization problems

minimize f(x)subject to $g_i(x)$

- $f: \mathbf{R}^n \to \mathbf{R}$
- $q_i: \mathbf{R}^n \to \mathbf{R}$

$$x) \le 0, \quad i = 1, \dots, m$$

Convex objective function **Convex constraints functions**

Convex feasible set

 $C = \{x \mid g_i(x) \le 0, \quad i = 1, \dots, m\}$

Modelling software for convex optimization

- **Construct problems** using library of basic functions
- Verify convexity by general composition rule
- Express the problem in input format required by a specific solver

Modelling tools simplify the formulation of convex optimization problems

Modelling software for convex optimization

- **Construct problems** using library of basic functions
- Verify convexity by general composition rule
- Express the problem in input format required by a specific solver

Examples

- CVX, YALMIP (Matlab)
- CVXPY (Python)
- Convex.jl (Julia)

Modelling tools simplify the formulation of convex optimization problems

Solving convex optimization problems **CVXPY**

x = cp.Variable(n)objective = cp.Minimize(cp.norm(A*x - b)) constraints = [0 <= x, x <= 1]problem = cp.Problem(objective, constraints)

result = problem.solve()

The optimal value for x is stored in `x.value`. print(x.value)

minimize $||Ax - b||_2$ subject to $0 \le x < 1$

- # The optimal objective value is returned by `problem.solve()`.

Local vs global minima (optimizers)

subject to $x \in C$

Local optimizer x

 $f(y) \ge f(x), \quad \forall y$ such that $||x - y||_2 \leq R$ minimize f(x)

Global optimizer x

40

Optimality and convexity

Local optimizer x

 $f(y) \ge f(x), \quad \forall y$ such that $||x - y||_2 \leq R$

Theorem

For a convex optimization problem, any local minimum is a global minimum

Suppose that f is convex and x is a local (not global) minimum for f, i.e.,

$$f(y) \ge f(x), \quad \forall y$$

Therefore, there exists a feasible z such that ||z - x|| > R and f(z) < f(x).

- such that $||x y||_2 \leq R$.

Suppose that f is convex and x is a local (not global) minimum for f, i.e.,

$$f(y) \ge f(x), \quad \forall y$$

Therefore, there exists a feasible z such that ||z - x|| > R and f(z) < f(x).

Consider $y = (1 - \alpha)x + \alpha z$ with $\alpha = \frac{R}{2\|z - x\|_2}$.

Then, $||y - x||_2 = \alpha ||z - x||_2 = R/2 < R$, and by convexity of the feasible set, y is feasible.

such that $||x - y||_2 \le R$. ch that ||z - x|| > R and f(z) < f(x).

 $\frac{R}{2\|z-x\|_2}$. R, and easible.

Suppose that f is convex and x is a local (not global) minimum for f, i.e.,

$$f(y) \ge f(x), \quad \forall y$$

Therefore, there exists a feasible z such that ||z - x|| > R and f(z) < f(x).

Consider $y = (1 - \alpha)x + \alpha z$ with $\alpha = \frac{R}{2\|z - x\|_2}$.

Then, $\|y - x\|_2 = \alpha \|z - x\|_2 = R/2 < R$, and by convexity of the feasible set, y is feasible.

By convexity of f we have $f(y) \le (1 - \alpha)f(x) + \alpha f(z) < f(x)$, which contradicts the local optimum definition.

such that $||x - y||_2 \leq R$.

Suppose that f is convex and x is a local (not global) minimum for f, i.e.,

$$f(y) \ge f(x), \quad \forall y$$

Therefore, there exists a feasible z such that ||z - x|| > R and f(z) < f(x).

Consider $y = (1 - \alpha)x + \alpha z$ with $\alpha = \frac{R}{2\|z - x\|_2}$.

Then, $\|y - x\|_2 = \alpha \|z - x\|_2 = R/2 < R$, and by convexity of the feasible set, y is feasible.

By convexity of f we have $f(y) \le (1 - \alpha)f(x) + \alpha f(z) < f(x)$, which contradicts the local optimum definition. Therefore, x is globally optimal.

- such that $||x y||_2 \leq R$.
- R

"...in fact, the great watershed in optimization isn't between linearity and nonlinearity, but convexity and nonconvexity."

R. Tyrrell Rockafellar, in SIAM Review, 1993

Nonlinear optimization Topics of this part of the course

(if applied to **convex problems**, they find **global minima**)

Conditions to **characterize** minima

Algorithms to find (local) minima

Introduction to nonlinear optimization

Today, we learned to:

- **Define** nonlinear optimization problems
- gradients)
- Verify convexity and construct convex optimization problems
- **Define** convex optimization problems in CVXPY

Understand convex analysis fundamentals (sets, cones, functions, and

Understand the importance of *convexity* vs *nonconvexity* in optimization

Next lecture

Optimality conditions in nonlinear optimization

