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Ed Forum

 Why do we need to solve dual problem instead of the primal problem? When

we have a LP problem, in what scenario does solving dual problem more
efficient than primal problem?

 How does the definition of y imply nonnegative reduced costs?






Optimal objective values

Primal
minimize clx
subjectto Az <b

p* 1S the primal optimal value

Primal infeasible: p* = +oc
Primal unbounded: p* = —o0¢

Dual
maximize —bly

subjectto Aly+c=0
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d* 1s the dual optimal value

Dual infeasible: d* = —o¢

Dual unbounded: d* =

O



Relationship between primal and dual

p* = 400 p* finite p* = —00
I — 4 primal inf.
- dual unb.
. timal
I* finite optimal values
equal
Jr — _ . primal unb.
o0 exception dual inf

» Upper-right excluded by weak duality
* (1,1) and (3, 3) proven by weak duality
* (3,1) and (2, 2) proven by strong duality



Today’s agenda
Readings: [Chapter 4, LO][Chapter 11, LP]

* [wO-person zero-sum games
 Farkas lemma
 Complementary slackness

e Dual simplex method



Two-person zero-sum games



Rock paper scissors

Rules
At count to three declare one of: Rock, Paper, or Scissors

Winners

|dentical selection is a draw, otherwise:
 Rock beats (“dulls”) scissors

e Scissors beats (“cuts”) paper
 Paper beats (“covers”) rock

Extremely popular: world RPS society, USA RPS league, etc.



Two-person zero-sum game

» Player 1 (P1) chooses a number i € {1,...,m} (one of m actions)
* Player 2 (P2) chooses a number j € {1,...,n} (one of n actions)

Two players make their choice independently

Rule Rock, Paper, Scissors
R P S ]
Player 1 pays A;; to player 2 R| O 1 -1
A e R™*" is the payoff matrix A=P|-1 0 1
S| 1 -1 0




Mixed (randomized) strategies

Deterministic strategies can be systematically defeated

Randomized strategies
* P1 chooses randomly according to distribution x:

x; = probabllity that P1 selects action 2

» P2 chooses randomly according to distribution y:
y; = probabillity that P2 selects action ;

Expected payoff (from P1 P2), if they use mixed-strategies x and v,

Z Z miyinj — QZ‘TAy

i=1 j=1
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Mixed strategies and probability simplex

Probability simplex in R
P,={peR"[p>0, 17p=1}

Mixed strategy

For a game player, a mixed strategy is a distribution over all possible
deterministic strategies.

The set of all mixed strategies is the probability simplex — x € F,,, vy € P,
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Optimal mixed strategies

P1: optimal strategy =* Is the solution of

minimize  max x" Ay minimize  max (ATz),
ye Py - j=1,....,n
subjectto x € P, subjectto  z € P, "\

Inner problem over
deterministic
strategies (vertices)

P2: optimal strategy y* is the solution of /
maximize xfg]ijﬂ r' Ay maximize min (Ay);
| ™m 1=1,....m

subjectto y € P, subjectto y € P,

Optimal strategies x* and y* can be computed using linear optimization .,



Minmax theorem

Theorem
max min ' Ay = min max z’ Ay
ye P, xeP,, ze P, ye P,
Proof
The optimal =* is the solution of The optimal y* is the solution of
minimize t maximize w
subjectto Alz <t1 subjectto Ay > wl
11 =1 11y =1
x>0 y > 0

The two LPs are duals and by strong duality the equality follows. [l 13



Nash equilibrium

Theorem

max min ' Ay = min max z’ Ay
ye P, xeP,, ze P, ye P,

Consequence

The pair of mixed strategies (z*, y*) attains the Nash equilibrium of the two-
person matrix game, i.e.,

vt Ayt >t Ayt > o Ay, Vz e P, Vye P,
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42 0 =3
A=|-2 —4 -3 3
-2 -3 4 1

minmax A4;; = 3 > —2 = maxmin 4,
() 9 9 ()

Optimal mixed strategies
r* = (0.37,0.33,0.3), y* = (0.4,0,0.13,0.47)

Expected payoff
o Ayt = 0.2



Farkas lemma



Feasibility of polyhedra

P={x|Ax=0b, x>0}

How to show that P is feasible?
Easy: we just need to provide an x € P, I.e., a certificate

How to show that P is infeasible?
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Farkas lemma

Theorem
Given A and b, exactly one of the following statements is true:

1. There existsan x with Ax = b, x > 0

2. There exists a y with ATy > 0, b''y < 0
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Farkas lemma

Geometric interpretation

1. First alternative
There exists an x with Az = b6, x > 0

n
bIZ%ZAZ, CCZ'>O,Z.:1,...,TL
1=1

b IS In the cone generated by the
columns of A

2. Second alternative
There exists a y with A%y > 0, b1y < 0

ylA; >0, i=1,...,m, ylb <0

The hyperplane y! z = 0
separates b from Aq,... A,
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Farkas lemma

There exists x with Az = b, > 0 OR There exists y with A7y >0, bly < 0

Proof

1 and 2 cannot be both true (easy)

r>0,Ar=bandy' A >0 — ylb =yl Az > 0
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Farkas lemma
There exists = with Az =b, = > 0 OR There exists y with ATy >0, b'y < 0

Proof
1 and 2 cannot be both false (duality)

Primal Dual
minimize 0
subjectto Az =0

xr > 0

maximize —bly
subjectto Aly >0

T Strong duality holds

y = 0 always feasible d* # —oco, p"=d"
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Farkas lemma
There exists = with Az =b, = > 0 OR There exists y with ATy >0, b'y < 0

Proof
1 and 2 cannot be both false (duality)

Primal Dual
minimize 0
subjectto Az =0

r > 0

maximize —b'y
subjectto Aly >0

Alternative 1: primal feasible p* = d* = 0

b1y > 0 for all y such that AYy > 0
22



Farkas lemma
There exists = with Az =b, = > 0 OR There exists y with ATy >0, b'y < 0

Proof
1 and 2 cannot be both false (duality)

Primal Dual
minimize 0

| maximize —bly
subjectto Az =0

subjectto Aly >0

r > 0
Alternative 2: primal infeasible p* = d* = +o¢
y IS an
There exists y such that Ay > 0and b'y < 0 infeasibility

certificate >3



Farkas lemma

Many variations

There exists x with Ax =b, x > 0
OR

There exists y with A7y > 0, b1y < 0

There exists x with Ax < b, x > 0

OR
There exists y with A7y >0, b1y <0, y > 0

There exists  with Ax < b

OR
There exists y with A7y =0, bly <0, y > 0
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Complementary slackness



Optimality conditions

Primal Dual
minimize ¢’z maximize —b"y
subjectto  Ax < b subjectto A’y +c=0
y > 0

r and y are primal and dual optimal if and only if
- x Is primal feasible: Ax < b

- ¢y is dual feasible: A"y +c=0and y > 0

- The duality gap is zero: ¢!z +bly =0

Can we relate x and y (not only the objective)?
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Complementary slackness

Primal Dual
minimize ¢’z maximize —b"y
subjectto  Ax < b subjectto A’y +c=0
y > 0

Theorem
Primal,dual feasible x, y are optimal if and only if

yi(bj —a; ) =0, i=1,...,m
l.e., at optimum, b — Az and y have a complementary sparsity pattern:

Yy, >0 = CLTZE:bZ

(/

CL?ZL‘<bi = y; = 0
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Complementary slackness

Primal Dual
minimize ¢’z maximize —b"y
subjectto  Ax < b subjectto A’y +c=0
y > 0

Proof
The duality gap at primal feasible x and dual feasible y can be written as

crrx+by=(—Ay) ' x+by=(b—-Az)' y = Z yi(b; —a; ) =0
i=1

Since all the elements of the sum are nonnegative, they must all be 0

For feasible x and y complementary slackness = zero duality gap
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Geometric interpretation

Example in R? @, —c

Two active constraints at optimum: aipaz* = by, agx* = by

Optimal dual solution y satisfies:
ATy—|—Cz()7 y > 0, yZ:OfOrZ#{l,Q}
In other words, —c = a1y + a2ys With y1, 92 > 0

Geometric interpretation: —c lies in the cone generated by a; and as
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Example

minimize

subject to

—4x1 — dxo
—1 0
2 1
0 -1
1 2

Let’s show that feasible x = (1, 1) is optimal

VA
w O W O

Second and fourth constraints are activeat t —— vy = (0, 92,0, y4)

2 1| [

Aly=— =
_1 2_ Ya

4
O

and

yZZov

ys = 0

y = (0, 1,0, 2) satisfies these conditions and proves that z is optimal

Complementary slackness is useful to recover y* from z*



The dual simplex




Primal and dual basic feasible solutions

Primal problem Dual problem
minimize clx maximize —bTy
subjectto Az = subjectto ATy + ¢ >0

r > 0

Given a basis matrix Ag

Primal feasible: Az =b, >0 = a23=A4,0>0 Reduced costs

/

Dual feasible: ATy + c > 0. If Yy = —AéTCB — C — ATAETCB > ()

Zero duality gap: ¢’ = + b’y = chap — bTAchB = CcRrIpB — chglb =0

T

(by construction) >4



The primal (dual) simplex method

Primal problem
minimize ¢’z
subjectto Az =0

r > 0

Primal simplex

* Primal feasiblility
e Zero duality gap

Dual feasibility

Dual problem

maximize —bly
subjectto Aly+c¢>0

Dual simplex

» Dual feasibility
e Zero duality gap

Primal feasibility
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Conditions

P={y| A y+c>0}

Feasible dual directions

Given a basis matrix Ag = _AB(l)
we have dual feasible solution y:

c=Aly+c¢>0

Feasible direction d
y + 0d

Reduced cost change

c+ A" (y+6d) >0

—

c+60z >0

A" d = z (subspace restriction)

34




Feasible directions

Computation Subspace restriction

Basic indices
zgp = e; — B({) =1 exits the basis

Get d by solving ALd = zp

Nonbasic indices
iy = Apnd = A%AZ}T@-

Non-negativity of reduced costs (hon-degenerate assumption)
» Basic variables: cg = 0. Nonnegative direction zgp > 0.

 Nonbasic variables: ¢y > 0. Therefore -

0 >0suchthatcy +0zny >0
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Stepsize

How far can we go?

f* =max{f |0 >0and c+ 6z > 0}

Unbounded
If z > 0, then 6* = oo. The dual problem is unbounded (primal infeasible).

Bounded
Cj

If z; < 0 for some 7, then " = min ( ) =  min ( Cj)
{7|z;<0} 2 {jEN|z,;<0} Z;

(Since z; > 0, 7 € B)
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Moving to a new basis

Next reduced cost
c+ 0%z

Let j ¢ {B(1),...,B(m)} be the index such that ™ = CJ Then,

_ N <
Cj —+ (9 Zj — O
New basis
AB — _AB(l) Ce AB(E—l) Aj AB(£—|—1) Ce AB(m)_

New solution
Agxrg =0



An iteration of the dual simplex method

Initializati Remark
nitiafization | | | Reduced costs nonnegative
» a basic dual feasible solution y, i.e. A"y +¢ >0 |
» abasis matrix Agp = |Ap) ..., Apum) objective non-decreasing
Ilteration steps
1. Get x 5. If zy > 0, the dual problem is unbounded
. Solve Agzp = b (O(m?)) and the optimal value is +-oc. break
« Set e 01f B C
. 6. Compute step length * =  min (—C—J)
2. If 2 > 0, z feasible. break WENIZ <O\ %
3. Choose 7 such that ; < 0 7. Lompute new point y + 07d
8. Get new basis Az = Ag + (A; — A;)e;

4. Compute each direction z with
z: = 1, Agd — ¢, and zy = A%}d (O(m?))

perform rank-1 factor update
(7 enters, i exists) O(m?)



c=(—10,-12,-12,0,0,0)

Example 12 210 0
From lecture 6 A=12 1 2 0 1 0
2 2 1 0 0 1

Dual problem - -

minimize ¢!z maximize —bTy b = (20,20,20)

SUbjeCt to Ax =0 SUbjeCt to ATy +e> 0

xr > 0
Initialize

y = (10,0, 0) B ={1,5,6}

c+ Ay =(0,8,8,10,0,0) > 0
39



y = (10,0, 0)

Example N
c+ A"y =(0,8,8,10,0,0)
Ilteration 1 B =1{1,5,6}
1 0 0
Ap=12 1 0
2 0 1

Primal solution x = (20,0,0,0, —20, ;20)
Solve Axp=b = xp= (20, —20, —20)

Direction z = (0,—3,—2,—-2,1,0), =25

Solve Ahd=¢; = d=(-2,1,0)
Get zny = Azj\}d = (—3, —2, —2)

Step 0 =2.66, =2

0* = min (—¢;/z;) =1{2.66,4,5
min (~¢/%) = {2.66,4.5)

New y + y + 0*d = (4.66, 2.66,0)

c=(—10,-12,-12,0,0,0)

1 2 2 1 0 0
A=12 1 2 0 1 0
2 2 10 0 1

b = (20, 20, 20)
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y = (4.66,2.66,0)
—bly = —146.66

Example c+ ATy = (0,0,2.66,4.66,2.66,0)
Iteration 2 B={1,2,6}
1 2 0
Ap =12 1 0
2 2 1

Primal solution = = (6.66,6.66,0,0,0, —6.66)
Solve Azg =b = x5 = (6.66,6.66, —6.66)

Direction » — (0,0, -1.66, —0.66, —0.66,1), =6
Solve ALd=¢; = d=(-0.66,—0.66,1)
Get 2y = AL d = (—1.66,—0.66, —0.66)

Step 0" =16, j7=3

0* = min (—¢;/2;) = {1.6.7.4
{j{glgo}( Cj/zj) =14 !

New y <y + 6*d = (3.6,1.6,1.6)

c=(—10,-12,-12,0,0,0)

1 2 2 1 0 0
A=12 1 2 0 1 0
2 2 10 0 1

b = (20, 20, 20)

41



y = (3.6,1.6,1.6)

c=(—10,-12,-12,0,0,0)

E | —bly = —136 ) _
Xxampie c+ Ay =1(0,0,0,3.6,1.6,1.6) 22100
Iteration 3 B=1{1,2,3} A=12 1 2 0 1 0
1 2 2 2 2 1 0 0 1
Ap= (2 1 2 b = (20, 20, 20)
2 2 1
Primal solution = =(4,4,4,0,0,0)
Solve Aep=b = axp= (4,4,4)
Optimal solution Same as
x>0  — r* = (4,4,4,0,0,0) primal

simplex!
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Equivalence and symmetry

The dual simplex is equivalent to the primal simplex applied to the dual problem.

Dual problem

maximize
subject to

—bTy
Aty +¢>0

Standard form

minimize

subject to AT

w > 0

b b 0

AT

w

w=(y",y",s)

—1

43



Dual simplex efficiency

Seqguence of problems with varying feasible region

previous vy still dual feasible —— warm-start

Applied in many different contexts, for example:
1. sequential decision-making
2. mixed-integer optimization to solve subproblems

(more later in the course...)
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Linear optimization duality

Today, we learned to:

* Interpret linear optimization duality using game theory

* Prove Farkas lemma using duality

 Geometrically link primal and dual solutions with complementary slackness

 Implement the dual simplex method
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Next lecture

e Sensitivity analysis
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