22. The role of optimization
Ed Forum

• When it comes to warm starting, does offering a solver a warm start help it reduce solve time drastically if it normally takes only a few seconds for it to find a feasible (but not optimal) solution? Or does it depend on how good of a guess the warm start is?

• At the bottom of the page 18 of the slides, why do we hope to split at value x_i where $f(x_i) = U_i$? I can understand the motivation of the first two points, i.e., optimism and greed, but cannot understand this one.

• In the implementation examples, I notice that, no matter how long it takes to converge (sometimes even can not terminate), the upper bounds always find good solutions very quickly. Is there any intuition for this phenomenon?
Today’s lecture
The role of optimization

• Geometry of optimization problems
• Solving optimization problems
• What’s left out there?
• The role of optimization
Basic use of optimization

Optimal decisions

- Variables
- Objective
- Constraints

Decisions

Mathematical language

The algorithm computes them for you
Most optimization problems cannot be solved
Geometry of optimization problems
Linear optimization

minimize $c^T x$
subject to $Ax \leq b$

Optimal point properties

- Extreme points are optimal
- Need to search only between extreme points
Nonlinear optimization

minimize \(f(x) \)
subject to \(x \in C \)

Optimal point properties

- Any feasible point could be optimal
- Can have many locally optimal points
Fermat’s optimality conditions

minimize \(f(x) \)
subject to \(x \in C' \)

Stationarity conditions
\[0 \in \partial f(x) + \mathcal{I}_C(x) \]

Differentiable \(f \)
convex \(C' \)
\[-\nabla f(x) \in \mathcal{N}_C(x) \]

Properties
- Convex optimization (necessary and sufficient)
- Nonconvex optimization (necessary)
KKT optimality conditions

minimize \(f(x) \)
subject to \(g_i(x) \leq 0, \quad i = 1, \ldots, m \)

\[\nabla f(x^*) + \sum_{i=1}^{m} y_i^* \nabla g_i(x^*) = 0 \]

\(y^* \geq 0 \)

\(g_i(x^*) \leq 0, \quad i = 1, \ldots, m \)

\(y_i^* g_i(x^*) = 0, \quad i = 1, \ldots, m \)

Remarks

- Require Slater’s conditions or constraint qualifications (LICQ)
- Can be derived from Fermat’s optimality
- Necessary and sufficient for convex problems
- Only necessary for nonconvex problems

In practice

Search for KKT points
Certifying optimality

Dual function
\[g(y) \]

Properties
- Lower bound: \(g(y) \leq f(x), \quad \forall x, y \)
- Always -convex (concave)

Strong duality
\[g(y^*) = f(x^*) \]
- Linear optimization (unless primal and dual infeasible)
- Convex optimization (if Slater’s condition holds)

Optimality gap
- Convex optimization without strong duality
- Nonconvex optimization

It provides a suboptimality certificate
Solving optimization problems
Classical vs modern view

Classical view
• Linear optimization (zero curvature) is easy
• Nonlinear optimization (nonzero curvature) is hard

Correct view
• Convex optimization (nonnegative curvature) is easy
• Nonconvex optimization (negative curvature) is hard

The classical view is wrong
Numerical linear algebra

The core of optimization algorithms is linear systems solution

$$Ax = b$$

Direct method

1. Factor $A = A_1 A_2 \ldots A_k$ in “simple” matrices ($O(n^3)$)
2. Compute $x = A_k^{-1} \ldots A_1^{-1} b$ by solving k “easy” linear systems ($O(n^2)$)

Main benefit

factorization can be reused

with different right-hand sides b

You *never* invert A
Solving convex problems

Simplex methods
- Tailored to LPs
- Exponential worst-case performance
- Up to 10,000 variables

Cheap iterations (rank-1 updates)

Second-order methods (e.g., interior-point)
- Up to ~10,000 variables
- Polynomial worst-case complexity

Expensive iterations (matrix factorizations)

First-order methods
- Up to 1B variables
- Several convergence rates
- Sensitive to data scaling

Cheap iterations (matrix prefactored)
Convex optimization solvers
Remarks

- **No babysitting/**initialization required
- **Very reliable** and **efficient**
- Can solve problems in **milliseconds** on embedded platforms
- **Simplex** and **interior-point** solvers are **almost a technology**
- **First-order** methods are more **sensitive to data scaling** but work in **huge dimensions**
First-order methods for large-scale convex optimization

- Gradient/subgradient method
- Forward-backward splitting (proximal algorithms)
- Accelerated forward-backward splitting
- Douglas-Rachford splitting (ADMM)
- Interior-point methods (not covered for convex)

Large-scale systems
- start with feasible method with cheapest per-iteration cost
- if too many iterations, transverse down the list
Methods for nonconvex optimization

Convex optimization algorithms: global and typically fast

Nonconvex optimization algorithms: must give up one, global or fast

- **Local methods**: fast but not global
 Need not find a global (or even feasible) solution. They cannot certify global optimality because KKT conditions are not sufficient.

- **Global methods**: global but often slow
 They find a global solution and certify it.

→ Heuristics

→ Global methods
What’s left out there?
What we did not cover in nonlinear optimization

Second-order methods: High accuracy on small/medium-scale data
- Newton’s method
- Quasi-Newton (BFGS, L-BFGS)
- Interior-point methods for nonlinear optimization (IPOPT)

Stochastic gradient methods
- Stochastic gradient descent
- Variance reduction methods
- Deep learning optimizers

Optimization in data science
- Compressed sensing
- Low-rank matrix recovery
- Many more…

Covered in COS512/ELE539: Optimization for Machine Learning
(was!) covered in ELE520: Mathematics of Data Science
What we did not cover in convex optimization?

More in details on convex analysis

Conic optimization
- Second-order cone programming
- Semidefinite programming
- Sum-of-squares optimization

Convex relaxations of NP-hard problems

Covered in ORF523: Convex and Conic Optimization
The role of optimization
Optimization as a surrogate for real goal

Very often, optimization is not the actual goal

The goal usually comes from practical implementation (new data, real dynamics, etc.)

Real goal is usually encoded (approximated) in cost/constraints
Optimization problems are just models

“All models are wrong, some are useful.”

— George Box

Implications

- Problem formulation does not need to be “accurate”
- Objective function and constraints “guide” the optimizer
- The model includes parameters to tune

We often do not need to solve most problems to extreme accuracy
Portfolio

Optimization problem

maximize \(\mu^T x - \gamma x^T \Sigma x \)
subject to \(1^T x = 1 \)
\(x \geq 0 \)

Goal
Optimize backtesting performance

Uncertain returns
\(p_t \) random variable:
mean \(\mu \), covariance \(\Sigma \)

Backtesting performance
(sum over all past realizations)
- Total returns
- Cumulative risk (quadratic term)
Control

Optimization problem (control policy)

\[\phi(\bar{x}) = \arg\min_u \sum_{t=0}^{T-1} \ell(x_t, u_t) \]

subject to

\[x_{t+1} = f(x_t, u_t) \]
\[x_0 = \bar{x} \]
\[x_t \in \mathcal{X}, \ u_t \in \mathcal{U} \]

Goal:
Optimize closed-loop performance

Real dynamics
\[x_{t+1} = f(x_t, u_t, w_t) \]
\[w_t \]
uncertainty

Control input
\[u_t = \phi(x_t) \]

Closed-loop performance
\[J = \sum_{t=0}^{\infty} \ell(x_t, u_t) \]
Quadcopter control
Low accuracy works well

Quadcopter example
Linearized dynamics
\[x_{t+1} = Ax_t + Bu_t + w_t \]
\[x_t \in \mathbb{R}^{12}, \quad u_t \in \mathbb{R}^4 \]

Goal: track trajectory
minimize
\[\sum_t \left(\| x_t - x_t^{\text{des}} \|_2^2 + \gamma \| u_t \|_2^2 \right) \]

Closed loop simulation
Simulated dynamics
\[x_{t+1} = Ax_t + Bu_t + w_t \]
random variable (nonlinearities, disturbances, etc.)
Quadcopter control

Closed-loop behavior with OSQP solver

- Low accuracy: $\epsilon = 0.1$
- High accuracy: $\epsilon = 0.0004$

Altitude reference tracking
Model fitting

Training data

\[D_{\text{train}} = \{(x_i, y_i)\}_{i=1}^N \]

Optimization problem

\[f_{\text{train}}(w) = \sum_{(x_i, y_i) \in D_{\text{train}}} \ell(y_i, h_w(x_i)) \]

Goal

Optimize test performance

Test data

(unknown)

\[D_{\text{test}} = \{(x_i, y_i)\}_{i=1}^N \]

Test performance

\[f_{\text{test}}(w) = \sum_{(x_i, y_i) \in D_{\text{test}}} \ell(y_i, h_w(x_i)) \]
Model fitting
Support vector machine (linear classification)

Given a set of points \(\{v_1, \ldots, v_N\} \) with binary labels \(s_i \in \{-1, 1\} \). Find hyperplane that strictly separates the two classes

\[
\begin{align*}
& a^T v_i + b > 0 \quad \text{if} \quad s_i = 1 \quad \text{(homogeneous)} \\
& a^T v_i + b < 0 \quad \text{if} \quad s_i = -1
\end{align*}
\]

Equivalent to

\[
\begin{align*}
& s_i \nu_i^T x \geq 1 \\
& \nu_i = (v_i, 1)
\end{align*}
\]

\[
\begin{align*}
& x = (a, b)
\end{align*}
\]

minimize \(\sum_{i=1}^N \max\{0, 1 - s_i \nu_i^T x\} + \gamma/2 \|x\|_2^2 \)

quadratic term (interpretation: maximum margin)
Consensus SVM

Operator splitting form

minimize

subject to

\[f(x) = \sum_{i=1}^{N} \max\{0, 1 - s_i \nu_i^T x\} + \frac{\gamma}{2} \|z\|^2 \]

\[x = z \]

split across workers \(j \) with samples \(\mathcal{D}_j \) → \(f_j(x) = \sum_{i \in \mathcal{D}_j} \max\{0, 1 - s_i \nu_i^T x\} \)

Distributed model fitting ADMM

\[x_j^{k+1} = \text{prox}_{\lambda f_j}(z^k - u_j^k) \]

\[z^{k+1} = \frac{N/\lambda}{1/\gamma + N/\lambda} (\bar{x}^{k+1} + \bar{u}^{k+1}) \]

\[u_j^{k+1} = u_j^k + x_j^{k+1} - z^{k+1} \]

Worker loss

Local SVM

Averaging

Local update
Consensus SVM
Linear classification

Dashed lines are local workers’ hyperplanes

Optimal consensus hyperplane on test set after ~10 iterations
Conclusions

In ORF522, we learned to:

• **Model decision-making problems** across different disciplines as mathematical optimization problems.

• **Apply the most appropriate optimization tools** when faced with a concrete problem.

• **Implement** optimization algorithms and **prove** their convergence.

• **Understand** the limitations of optimization
Optimization cannot solve all our problems
It is just a mathematical model

But it can help us making better decisions

Thank you!

Bartolomeo Stellato