ORF522 – Linear and Nonlinear Optimization

10. Interior-point methods for linear optimization
Ed Forum

• Is it true that the online algorithm of recomputing the optimal solution when we found out about a new constraint is the main use case for the dual simplex method?

• How do you determine the magnitude of u (or maybe the range of u’s) to prevent it from changing the optimal basis but also not so small that the analyses does not provide meaningless information?

Section 5.1 40
Recap
Adding new variables

minimize \(c^T x \)
subject to \(Ax = b \)
\(x \geq 0 \)

Solution \(x^*, y^* \)
Adding new variables

minimize $c^T x$
subject to $Ax = b$
$x \geq 0$

Solution x^*, y^*

minimize $c^T x + c_{n+1} x_{n+1}$
subject to $Ax + A_{n+1} x_{n+1} = b$
$x, x_{n+1} \geq 0$
Adding new variables

minimize \(c^T x \)
subject to \(Ax = b \)
\(x \geq 0 \)

Solution \(x^*, y^* \)

minimize \(c^T x + c_{n+1} x_{n+1} \)
subject to \(Ax + A_{n+1} x_{n+1} = b \)
\(x, x_{n+1} \geq 0 \)

Solution \((x^*, 0), y^*\) optimal for the new problem?
Adding new variables
Optimality conditions

minimize \[c^T x + c_{n+1} x_{n+1} \]
subject to \[Ax + A_{n+1} x_{n+1} = b \]
\[x, x_{n+1} \geq 0 \]
\[\rightarrow \text{Solution } (x^*, 0) \text{ is still \textbf{primal feasible}} \]
Adding new variables

Optimality conditions

minimize \(c^T x + c_{n+1} x_{n+1} \)

subject to \(Ax + A_{n+1} x_{n+1} = b \)
\(x, x_{n+1} \geq 0 \)

Solution \((x^*, 0)\) is still \textbf{primal feasible}

Is \(y^* \) still \textbf{dual feasible}?

\[A_{n+1}^T y^* + c_{n+1} \geq 0 \]
Adding new variables

Optimality conditions

minimize \(c^T x + c_{n+1} x_{n+1} \)
subject to \(Ax + A_{n+1} x_{n+1} = b \)
\(x, x_{n+1} \geq 0 \)

\(c^T x + c_{n+1} x_{n+1} \)

Solution \((x^*, 0)\) is still **primal feasible**

Is \(y^* \) still **dual feasible**?

\(A_{n+1}^T y^* + c_{n+1} \geq 0 \)

Yes

\((x^*, 0)\) still **optimal** for new problem

Otherwise

Primal simplex
Adding new constraints

minimize \quad c^T x \\
subject to \quad Ax = b \\
\quad x \geq 0 \\

Solution \quad x^*, \; y^*
Adding new constraints

minimize \(c^T x \)
subject to \(Ax = b \)
\(x \geq 0 \)
Solution \(x^*, y^* \)

\[\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad Ax = b \\
& \quad x \geq 0 \\
\end{align*} \]

\[\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad Ax = b \\
& \quad a_{m+1}^T x = b_{m+1} \\
& \quad x \geq 0 \\
\end{align*} \]
Adding new constraints

minimize $c^T x$
subject to $Ax = b$
$x \geq 0$

Solution x^*, y^*

minimize $c^T x$
subject to $Ax = b$
$a_{m+1}^T x = b_{m+1}$
$x \geq 0$

Dual

maximize $-b^T y$
subject to $A^T y + a_{m+1}y_{m+1} + c \geq 0$
Adding new constraints

minimize \[c^T x \]
subject to \[Ax = b \]
\[x \geq 0 \]
Solution \(x^*, y^* \)

\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad Ax = b \\
& \quad x \geq 0
\end{align*}
\]

Dual

maximize \[-b^T y \]
subject to \[A^T y + a_{m+1} y_{m+1} + c \geq 0 \]

Solution \(x^*, (y^*, 0) \) **optimal** for the new problem?
Adding new constraints
Optimality conditions

maximize $-b^T y$
subject to $A^T y + a_{m+1} y_{m+1} + c \geq 0$ \quad \text{Solution} \ (y^*, 0) \ \text{is still dual feasible}
Adding new constraints

Optimality conditions

maximize \(-b^T y\)
subject to \(A^T y + a_{m+1} y_{m+1} + c \geq 0\) --- Solution \((y^*, 0)\) is still **dual feasible**

Is \(x^*\) still **primal feasible**?

\[Ax = b\]
\[a_{m+1}^T x = b_{m+1}\]
\[x \geq 0\]
Adding new constraints
Optimality conditions

maximize \(-b^T y\)
subject to \(A^T y + a_{m+1} y_{m+1} + c \geq 0\) \quad \rightarrow \quad \text{Solution } (y^*, 0) \text{ is still dual feasible}

Is \(x^*\) still primal feasible?
\[
\begin{align*}
Ax &= b \\
A_{m+1}^T x &= b_{m+1} \\
x &\geq 0
\end{align*}
\]

Yes \(x^*\) still optimal for new problem

Otherwise Dual simplex
Today’s lecture
[Chapter 14, NO][Chapters 17/18, LP]

• History
• Newton’s method
• Central path
• Primal-dual path-following algorithm
History
Ellipsoid method
Khachian (1979)

Answer to major question
Is worst-case LP complexity polynomial? Yes!
Ellipsoid method
Khachian (1979)

Answer to major question
Is worst-case LP complexity polynomial? Yes!

Drawbacks
Very inefficient. Much slower than simplex!
Ellipsoid method
Khachian (1979)

Answer to major question
Is worst-case LP complexity polynomial? Yes!

Drawbacks
Very inefficient. Much slower than simplex!

Benefits
Motivated new research directions
Interior-point methods

1950s-1960s: nonlinear convex optimization

- Sequential unconstrained optimization (Fiacco & McCormick), Logarithmic barrier method (Frish), affine scaling method (Dikin), etc.
- No worst-case complexity theory but often good practical performance
Interior-point methods

1950s-1960s: nonlinear convex optimization
• Sequential unconstrained optimization (Fiacco & McCormick), Logarithmic barrier method (Frish), affine scaling method (Dikin), etc.
• No worst-case complexity theory but often good practical performance

1980s-1990s: interior point methods
• Karmarkar’s algorithm (1984)
• Competitive with simplex, often faster for larger problems
Newton’s method
Newton’s method for nonlinear equations

\[h: \mathbb{R}^n \to \mathbb{R}^m \]

Goal: solve

\[h(x) = 0 \]

Derivative

\[
Dh = \begin{bmatrix}
\frac{\partial h_1}{\partial x_1} & \cdots & \frac{\partial h_1}{\partial x_n} \\
\vdots & \ddots & \vdots \\
\frac{\partial h_m}{\partial x_1} & \cdots & \frac{\partial h_m}{\partial x_n}
\end{bmatrix}
\]
Newton’s method for nonlinear equations

Goal: solve $h(x) = 0$

$$Dh = \begin{bmatrix} \frac{\partial h_1}{\partial x_1} & \cdots & \frac{\partial h_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial h_m}{\partial x_1} & \cdots & \frac{\partial h_m}{\partial x_n} \end{bmatrix}$$

First-order approximation

$h(x) \approx h(\bar{x}) + Dh(\bar{x})(x - \bar{x})$

Iteratively set to zero

$h(x^k) + Dh(x^k)(x^{k+1} - x^k) = 0$
Newton’s method for nonlinear equations

Goal: solve
\[h(x) = 0 \]

Derivative
\[
Dh = \begin{bmatrix}
\frac{\partial h_1}{\partial x_1} & \cdots & \frac{\partial h_1}{\partial x_n} \\
\vdots & \ddots & \vdots \\
\frac{\partial h_m}{\partial x_1} & \cdots & \frac{\partial h_m}{\partial x_n}
\end{bmatrix}
\]

First-order approximation
\[h(x) \approx h(\bar{x}) + Dh(\bar{x})(x - \bar{x}) \]

Iteratively set to zero
\[h(x^k) + Dh(x^k)(x^{k+1} - x^k) = 0 \]

Iterations
- Solve \(Dh(x^k) \Delta x = -h(x^k) \)
- \(x^{k+1} \leftarrow x^k + \Delta x \)
Newton method

Convergence

Iterations
- Solve $D h(x^k) \Delta x = -h(x^k)$
- $x^{k+1} \leftarrow x^k + \Delta x$

Remarks
- Iterations can be **expensive** (linear system solution)
- **Fast (quadratic) convergence** close to the solution x^*
Optimality conditions

minimize \[c^T x \]
subject to \[Ax \leq b \]
Optimality conditions

<table>
<thead>
<tr>
<th>Primal</th>
<th>Dual</th>
</tr>
</thead>
<tbody>
<tr>
<td>minimize $c^T x$</td>
<td>maximize $-b^T y$</td>
</tr>
<tr>
<td>subject to $Ax \leq b$</td>
<td>subject to $A^T y + c = 0$</td>
</tr>
<tr>
<td></td>
<td>$s \geq 0$</td>
</tr>
<tr>
<td></td>
<td>$y \geq 0$</td>
</tr>
</tbody>
</table>
Optimality conditions

Primal

- minimize $c^T x$
- subject to $Ax \leq b$
- subject to $A^Ty + c = 0$

Dual

- maximize $-b^T y$
- subject to $A^Ty + c = 0$
- $y \geq 0$

Optimality conditions

- $Ax + s - b = 0$
- $A^Ty + c = 0$
- $s_i y_i = 0$
- $s, y \geq 0$
Main idea

\[
S \cdot y = 0 \quad \forall: \quad \iff \begin{bmatrix} s_1 \ldots s_m \end{bmatrix} \begin{bmatrix} y_1 \ldots y_m \end{bmatrix} = 0
\]

Optimality conditions

\[
h(x, s, y) = \begin{bmatrix} Ax + s - b \\ A^T y + c \\ SY1 \end{bmatrix} = 0 \\
S = \text{diag}(s) \\
Y = \text{diag}(y)
\]

\[s, y \geq 0\]

• Apply variants of Newton’s method to solve \(h(x, s, y) = 0\)

• Enforce \(s, y > 0\) (strictly) at every iteration

• **Motivation** avoid getting stuck in “corners”
Newton’s method for optimality conditions

Root-finding equation

\[h(x, s, y) = \begin{bmatrix} Ax + s - b \\ A^T y + c \\ SY1 \end{bmatrix} = 0 \]

Linear system

\[
\begin{bmatrix}
Dh \\
0 & A & I \\
A^T & 0 & 0 \\
S & 0 & Y
\end{bmatrix}
\begin{bmatrix}
\Delta y \\
\Delta x \\
\Delta s
\end{bmatrix}
=
\begin{bmatrix}
-h \\
-r_p \\
-r_d \\
-SY1
\end{bmatrix}
\]

Residuals

\[r_p = Ax + s - b \]
\[r_d = A^T y + c \]
Newton’s method for optimality conditions

Root-finding equation

\[h(x, s, y) = \begin{bmatrix} Ax + s - b \\ A^T y + c \\ SY1 \end{bmatrix} = 0 \]

Linear system

\[
\begin{bmatrix}
0 & A & I \\
A^T & 0 & 0 \\
S & 0 & Y
\end{bmatrix}
\begin{bmatrix}
\Delta y \\
\Delta x \\
\Delta s
\end{bmatrix}
= \begin{bmatrix}
-h \\
-r_p \\
-r_d \\
-SY1
\end{bmatrix}
\]

Residuals

\[r_p = Ax + s - b \]
\[r_d = A^T y + c \]

Line search to enforce \(s > 0 \)

\[(x, s, y) \leftarrow (x, s, y) + \alpha(\Delta x, \Delta s, \Delta y) \]
Newton’s method for optimality conditions

Root-finding equation

\[h(x, s, y) = \begin{bmatrix} Ax + s - b \\ ATy + c \\ SY1 \end{bmatrix} = 0 \]

Linear system

\[
\begin{bmatrix}
Dh \\
\begin{bmatrix} 0 & A & I \\ AT & 0 & 0 \\ S & 0 & Y \end{bmatrix}
\end{bmatrix} \begin{bmatrix}
\Delta y \\
\Delta x \\
\Delta s
\end{bmatrix} = \begin{bmatrix}
-h \\
r_p \\
r_d \\
-SY1
\end{bmatrix}
\]

Residuals

\[
\begin{align*}
r_p &= Ax + s - b \\
r_d &= ATy + c
\end{align*}
\]

Issue

Pure Newton’s step does not allow significant progress towards

\[
h(x, s, y) = 0 \text{ and } \xi, y \geq 0.
\]
Central path
Smoothed optimality conditions

Optimality conditions

\[Ax + s - b = 0 \]
\[A^T y + c = 0 \]
\[s_i y_i = \tau \]
\[s, y \geq 0 \]

Same optimality conditions for a “smoothed” version of our problem
Newton’s method for smoothed optimality conditions

Smoothed optimality conditions

\[h_\tau(x, s, y) = \begin{bmatrix} Ax + s - b \\ A^T y + c \\ SY1 - \tau 1 \end{bmatrix} = 0 \]

\[s, y \geq 0 \]
Newton’s method for smoothed optimality conditions

Smoothed optimality conditions

\[h_\tau(x, s, y) = \begin{bmatrix} Ax + s - b \\ A^T y + c \\ SY + \tau 1 \end{bmatrix} = 0 \]
\[s, y \geq 0 \]

Linear system

\[
\begin{bmatrix}
0 & A & I \\
A^T & 0 & 0 \\
S & 0 & Y
\end{bmatrix}
\begin{bmatrix}
\Delta y \\
\Delta x \\
\Delta s
\end{bmatrix} =
\begin{bmatrix}
-r_p \\
-r_d \\
-SY + \tau 1
\end{bmatrix}
\]

Line search to enforce \(s > 0 \)

\[(x, s, y) \leftarrow (x, s, y) + \alpha(\Delta x, \Delta s, \Delta y)\]
Logarithmic barrier

$$\phi(s) = -\tau \sum_{i=1}^{m} \log(s_i) \quad \text{on domain} \quad s_i > 0$$

As $\tau \to 0$ it approximates

$$I_{s_i \geq 0} = \begin{cases}
0 & \text{if } s_i \geq 0 \\
\infty & \text{otherwise}
\end{cases}$$
Smoothed problem

minimize \(c^T x \)

subject to \(Ax + s = b \)
\(s \geq 0 \)
Smoothed problem

minimize \(c^T x \)
subject to \(Ax + s = b \)
\(s \geq 0 \)

minimize \(c^T x + \phi(x) = c^T x - \tau \sum_{i=1}^{m} \log(s_i) \)
subject to \(Ax + s = b \)
Smoothed problem

\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad Ax + s = b \\
& \quad s \geq 0
\end{align*}
\]

\[
\begin{align*}
\text{minimize} & \quad c^T x + \phi(x) = c^T x - \tau \sum_{i=1}^{m} \log(s_i) \\
\text{subject to} & \quad Ax + s = b
\end{align*}
\]

\[
\text{Dual cost}
\]

\[
g(y) = \minimize_{x,s} \mathcal{L}(x, s, y) = c^T x + \phi(s) + y^T(Ax + s - b)
\]
Smoothed problem

\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad Ax + s = b \\
\end{align*}
\]

\[
\begin{align*}
s \geq 0
\end{align*}
\]

\[
\begin{align*}
\text{minimize} & \quad c^T x + \phi(x) = c^T x - \tau \sum_{i=1}^m \log(s_i) \\
\text{subject to} & \quad Ax + s = b
\end{align*}
\]

Dual cost

\[
g(y) = \min_{x,s} \mathcal{L}(x, s, y) = c^T x + \phi(s) + y^T (Ax + s - b)
\]

\[
\frac{\partial \mathcal{L}}{\partial x} = A^T y + c = 0
\]

\[
\frac{\partial \mathcal{L}}{\partial s_i} = -\tau \frac{1}{s_i} + y_i = 0 \implies s_i y_i = \tau
\]

\[
\Box
\]
Central path

minimize $c^T x - \tau \sum_{i=1}^{m} \log(s_i)$
subject to $Ax + s = b$

Set of points $(x^*(\tau), s^*(\tau), y^*(\tau))$
with $\tau > 0$ such that

$Ax + s - b = 0$

$A^T y + c = 0$

$s_i y_i = \tau$

$s, y \geq 0$
Central path

minimize \(c^T x - \tau \sum_{i=1}^{m} \log(s_i) \)
subject to \(Ax + s = b \)

Set of points \((x^*(\tau), s^*(\tau), y^*(\tau))\) with \(\tau > 0 \) such that
\[
\begin{align*}
Ax + s - b &= 0 \\
A^T y + c &= 0 \\
s_i y_i &= \tau \\
s, y &\geq 0
\end{align*}
\]

Main idea
Follow central path as \(\tau \to 0 \)
CENTRAL PATH
Primal-dual path-following method
Duality measure

Definition

$$\mu = \frac{s^T y}{m}$$

Average value of the pairs $s_i y_i$

It describes the “desirability” of each point in the search space
Algorithm step

Linear system

\[
\begin{bmatrix}
0 & A & I \\
A^T & 0 & 0 \\
S & 0 & Y \\
\end{bmatrix}
\begin{bmatrix}
\Delta y \\
\Delta x \\
\Delta s \\
\end{bmatrix}
=
\begin{bmatrix}
-r_p \\
-r_d \\
-SY1 + \sigma \mu 1 \\
\end{bmatrix}
\]

Duality measure

\[
\mu = \frac{s^T y}{m}
\]

Centering parameter

\(\sigma \in [0, 1]\)
Algorithm step

Linear system

\[
\begin{bmatrix}
0 & A & I \\
A^T & 0 & 0 \\
S & 0 & Y
\end{bmatrix}
\begin{bmatrix}
\Delta y \\
\Delta x \\
\Delta s
\end{bmatrix} =
\begin{bmatrix}
-r_p \\
-r_d \\
-SY1 + \sigma \mu 1
\end{bmatrix}
\]

Duality measure

\[
\mu = \frac{s^T y}{m}
\]

Centering parameter

\begin{align*}
\sigma &= 0 \quad \Rightarrow \quad \text{Newton step} \\
\sigma &= 1 \quad \Rightarrow \quad \text{Centering step towards } (x^*(\mu), s^*(\mu), y^*(\mu))
\end{align*}
Algorithm step

Linear system

\[
\begin{bmatrix}
0 & A & I \\
A^T & 0 & 0 \\
S & 0 & Y
\end{bmatrix}
\begin{bmatrix}
\Delta y \\
\Delta x \\
\Delta s
\end{bmatrix} =
\begin{bmatrix}
-r_p \\
-r_d \\
-SY1 + \sigma \mu 1
\end{bmatrix}
\]

Duality measure

\[\mu = \frac{s^T y}{m}\]

Centering parameter

\[\sigma \in [0, 1]\]

\[\sigma = 0 \quad \Rightarrow \quad \text{Newton step}\]

\[\sigma = 1 \quad \Rightarrow \quad \text{Centering step towards } (x^*(\mu), s^*(\mu), y^*(\mu))\]

Line search to enforce \(y, s > 0\)

\[(x, s, y) \leftarrow (x, s, y) + \alpha(\Delta x, \Delta s, \Delta y)\]
Path-following algorithm idea

Centering step
\[\sigma = 1 \]

Newton step
\[\sigma = 0 \]

Combined step
\[x^* \]
Path-following algorithm idea

Centering step
It brings towards the **central path**
and is usually biased towards $s, y > 0$.
No progress on duality measure μ
Path-following algorithm idea

Centering step
It brings towards the **central path** and is usually biased towards $s, y > 0$.
No progress on duality measure μ

Newton step
It brings towards the **zero duality measure** μ. Quickly violates $s, y > 0$.

Combined step

Newton step
$\sigma = 0$

Centering step
$\sigma = 1$
Path-following algorithm idea

Centering step
It brings towards the central path and is usually biased towards $s, y > 0$. **No progress** on duality measure μ.

Newton step
It brings towards the zero duality measure μ. Quickly violates $s, y > 0$.

Combined step
Best of both worlds with longer steps.
Primal-dual path-following algorithm

Initialization
1. Given \((x_0, s_0, y_0)\) such that \(s_0, y_0 > 0\)

Iterations
1. Choose \(\sigma \in [0, 1]\)
2. Solve
 \[
 \begin{bmatrix}
 0 & A & I \\
 A^T & 0 & 0 \\
 S & 0 & Y
 \end{bmatrix}
 \begin{bmatrix}
 \Delta y \\
 \Delta x \\
 \Delta s
 \end{bmatrix}
 =
 \begin{bmatrix}
 -r_p \\
 -r_d \\
 -SY1 + \sigma \mu 1
 \end{bmatrix}
 \]
 where \(\mu = s^T y / m\)
3. Find maximum \(\alpha\) such that \(y + \alpha \Delta y > 0\) and \(s + \alpha \Delta s > 0\)
4. Update \((x, s, y) \leftarrow (x, s, y) + \alpha(\Delta x, \Delta s, \Delta y)\)
Working towards optimality conditions

Optimality conditions satisfied only at convergence

Primal residual
\[r_p = Ax + s - b \to 0 \]

Dual residual
\[r_d = A^T y + c \to 0 \]

Complementary slackness
\[s^T y \to 0 \]
Working towards optimality conditions

Optimality conditions satisfied **only at convergence**

Primal residual
\[r_p = Ax + s - b \rightarrow 0 \]

Dual residual
\[r_d = A^T y + c \rightarrow 0 \]

Complementary slackness
\[s^T y \rightarrow 0 \]

Stopping criteria
\[\|r_p\| \leq \epsilon_{\text{pri}} \]
\[\|r_d\| \leq \epsilon_{\text{dua}} \]
\[s^T y \leq \epsilon_{\text{gap}} \]
Convergence
Definitions

Primal-dual strictly feasible set

\[\mathcal{F}^o = \{(x, s, y) \mid Ax + s = b, \ A^T y + c = 0, \ s, y > 0\} \]

Central path neighborhood

\[\mathcal{N}(\gamma) = \{(x, s, y) \in \mathcal{F}^o \mid s_i y_i \geq \gamma \mu\} \quad \text{with } \gamma \in (0, 1] \] (almost all the feasible region)
Theorem

[Page 402-406, NO]

Smallest decrement

\[\mu_{k+1} \leq (1 - \delta/n) \mu_k \]

with constant \(\delta > 0 \)
Theorem
[Page 402-406, NO]

Smallest decrement
\[\mu_{k+1} \leq (1 - \delta/n) \mu_k \] with constant \(\delta > 0 \)

Iteration complexity
Given \((x_0, s_0, y_0) \in N(\gamma)\), there exists \(K = O(n \log(1/\epsilon))\) such that
\[\mu_k \leq \epsilon \mu_0 \quad \text{for all } k \geq K \]
Theorem

Smallest decrement
\[\mu_{k+1} \leq (1 - \delta/n) \mu_k \] with constant \(\delta > 0 \)

Iteration complexity
Given \((x_0, s_0, y_0) \in \mathcal{N}(\gamma)\), there exists \(K = O(n \log(1/\epsilon)) \) such that
\[\mu_k \leq \epsilon \mu_0 \] for all \(k \geq K \)

Remark Modified versions achieve \(O(\sqrt{n} \log(1/\epsilon)) \)
Iteration complexity proof

\[\mu_{k+1} \leq (1 - \delta/n) \mu_k \]
Iteration complexity proof

[Page 402-406, NO]

\[\mu_{k+1} \leq (1 - \delta/n) \mu_k \]

(take logarithm)

\[\log \mu_{k+1} \leq \log (1 - \delta/n) + \log \mu_k \]
Iteration complexity proof

[Page 402-406, NO]

\[\mu_{k+1} \leq (1 - \delta/n) \mu_k \]

(take logarithm)

\[\log \mu_{k+1} \leq \log (1 - \delta/n) + \log \mu_k \]

(apply iteratively)

\[\log \mu_k \leq k \log (1 - \delta/n) + \log \mu_0 \]
Iteration complexity proof
[Page 402-406, NO]

\[\mu_{k+1} \leq (1 - \delta/n) \mu_k \]

(take logarithm)
\[\log \mu_{k+1} \leq \log (1 - \delta/n) + \log \mu_k \]

(apply iteratively)
\[\log \mu_k \leq k \log (1 - \delta/n) + \log \mu_0 \]

Since \(\log(1 + \beta) \leq \beta, \quad \forall \beta > -1 \)
\[\log(\mu_k/\mu_0) \leq k(-\delta/n) \]
Iteration complexity proof

[Page 402-406, NO]

\[\mu_{k+1} \leq (1 - \delta/n) \mu_k \]

(take logarithm)

\[\log \mu_{k+1} \leq \log (1 - \delta/n) + \log \mu_k \]

(apply iteratively)

\[\log \mu_k \leq k \log (1 - \delta/n) + \log \mu_0 \]

Since \(\log(1 + \beta) \leq \beta, \quad \forall \beta > -1 \)

\[\log(\mu_k/\mu_0) \leq k(-\delta/n) \]

If \(k(-\delta/n) \leq \log(\epsilon) \), then \(\log(\mu_k/\mu_0) \leq \log(\epsilon) \). Therefore, \(\mu_k/\mu_0 \leq \epsilon \)
Iteration complexity proof

\[\mu_{k+1} \leq (1 - \delta/n) \mu_k \]

(take logarithm)
\[
\log \mu_{k+1} \leq \log \left(1 - \frac{\delta}{n}\right) + \log \mu_k
\]

(apply iteratively)
\[
\log \mu_k \leq k \log \left(1 - \frac{\delta}{n}\right) + \log \mu_0
\]

Since \(\log(1 + \beta) \leq \beta \), \(\forall \beta > -1 \)
\[
\log(\mu_k/\mu_0) \leq k(-\delta/n)
\]

If \(k(-\delta/n) \leq \log(\epsilon) \), then \(\log(\mu_k/\mu_0) \leq \log(\epsilon) \). Therefore, \(\mu_k/\mu_0 \leq \epsilon \)
\[
k \geq -\frac{\log(\epsilon)}{-\delta/n}
\]

Rewriting the inequality: \(k \geq \frac{n}{\delta} \log(1/\epsilon) \)
Interior-point methods for linear optimization

Today, we learned to:

• **Apply** Newton’s method to solve optimality conditions
• **Analyze** the central path and the smoothed optimality conditions
• **Develop** a prototype primal-dual path-following algorithm
Next lecture

- Practical interior-point method (Mehrotra predictor-corrector algorithm)
- Linear algebra implementation details
- Linear optimization recap