ORF522 - Linear and Nonlinear Optimization

6. Numerical linear algebra and simplex implementation

Bartolomeo Stellato — Fall 2021

Ed Forum

* What about pivoting rules vs complexity? “There exists pivoting rule...”
For any pivoting rule, you can create an example for which it works badly. So there is no
way to construct a pivoting rule that works in polynomial time for any example.

* What is the complexity of each iteration?
More of this today

* |What do you mean by “average complexity”?
Average across problems encountered. More about it today...

* Why don't we choose the "largest cost decrement” rule? My intuition was that with this rule
we can guarantee finite termination (is that true?), and it also seems to be more efficient.
It is less efficient in practice. You need to compute all the possible directions (solving a
linear system) and check the largest decrement

Initialization

* a basic feasible solution x
* abasis matrix Agp = | A1)

Ilteration steps
1. Compute the reduced costs ¢

« Solve Agp — CRB
cc=c—A'p

2. If ¢ > 0, x optimal. break

3. Choose j such that ¢; < 0

An iteration of the simplex method

- 7AB(m)_

. Compute search direction d with

dj — 1 and ABCZB — —Aj

. Ifdg > 0, the problem is unbounded

and the optimal value is —oco. break

. Compute step length 6* = min (

{:€B|d; <0}

. Define y such that y = = + 6*d

. Get new basis B (i exits and j enters)

Today’s agenda

[Chapter 3, Bertsimas and Tsitsiklis]
[Chapter 13, Nocedal and Wright]
[Chapter 8, Vanderbei]

 Numerical linear algebra
* Realistic simplex implementation
 Example

 Empirical complexity

Numerical linear algebra

Deeper look at complexity

Flop count

floating-point operations: one addition, subtraction, multiplication, division

Estimate complexity of an algorithm

» Express number of flops as a function of problem dimensions
- Simplify and keep only leading terms

Remarks

* Not accurate in modern computers (multicore, GPU, etc.)
- Still rough and widely-used estimate of complexity

Complexity

Basic examples

Vector operations (z,y € R")

- Inner product z* y: 2n — 1 flops
« Sum x + y or scalar multiplication ax: n flops

Matrix-vector product (y = Ax with A € R™”*")

* m(2n — 1) flops
» 2N If A is sparse with NV nonzero elements

Matrix-matrix product (C' = AB with A € R™*", B € R"*P)

» pm(2n — 1) flops
» Less if A and/or B are sparse

How do we solve linear systems In practice?

Idea

- compute A7}
Ax =0
- multiply A=1b

Example
5000 x 5000 matrix A and a 5000-vector b

- Solve by computing A1

» Solve with numpy.linalg.solve

What’s happening inside?

Complexity

Solving linear system

Execution time (cost) of solving Ax = b with A € R™"*"

General case O(n°)

Much less if A structured (sparse, banded, Toepliz, etc.)

You (almost) never compute A~ explicitly!

* Numerically unstable (divisions)
* You lose structure

10

Easy linear systems

Diagonal matrix

Solution

L — A_lb — (bl/A117 .o

Complexity
n flops

|

A1z = by

Ao = b

Annxn — bn

11

Easy linear systems

Lower triangular matrix

All) -261_ _bl_ Allml — bl
Agl AQQ Lo bg A21$1 = A22$2 — b2
n — —_—
A1 Ana Ann] [Tn_ bn_ Ap1zr + Apaa + ... AppTn = by,
Solution: “forward substitution” Complexity

» First equation: =1 = b1/A11 * First equation: 1 flop (division)
» Second equation: x5 = (by — As121) /Ao « Second equation: 3 flops

* Repeattoget z3,..., 2, » ith step needs 2: — 1 flops

1+3+---+(2n—1) = n* flops
12

example

Easy linear systems

. . r=(231
Permutation matrices T =)
m = (m,...,T,) IS a permutation of (1,2,...,n) l
A n x n permutation matrix P, i £ S -
permutes the vector x 0 1 Of [z T2
Pr=(Tr,,...,Tx,) 0 0 1| |z2| = |23
] 1 0 O L3 L1
Properties - - - -
¢ P.. — L g=m p! l
7’ 0 otherwise 0 0 1] [zo] [z
- P~ = P! (inverse permutation) 1 0 0f |za] = |2
: 1
Complexity Y U] L2 3.

Solve Px = b: 0 flops (no operations) 3

Summary of easy linear systems

AN
A

A

diagonal
A= diag(al, c e ,an)

lower triangular
Af,;j — (0 for: <]

upper triangular
Az’j =0fori >

permutation
P,=1Iif7=m; else0

method

forward
substitution

backward
substitution

Inverse
permutation

flops

14

Sparse matrices

Most real-world problems are sparse

A matrix A is sparse if the majority of its elements is 0

typically < 15% nonzeros

Efficient representations
» Triplet format: (i, j, z;;)
- Compressed Sparse Column format: (¢, z;,;) and p;
- Compressed Sparse Row format: (j,z;;) and p;

15

How do we solve linear systems In practice?
Ax = b

Any idea?

We know how to solve special ones

Let’s use that!

16

The factor-solve method for solving Ax = b

1. Factor A as a product of simple matrices:
A:A1A2°°°Ak, B— AlAQ,...AkCIZ:b

(A; diagonal, upper/lower triangular, permutation, etc)

All‘l =%

— Aozo =17

2. Compute z = A~ 1b=A_"-. . AT'D
by solving £ “easy” systems

At = T)—1

Note: step 2 Is much cheaper than step 1 .7

Multiple right-hand sides

You now have factored A and you want to solve d linear systems
with different righ-hand side m-vectors b;

AZE:bl A$:b2 A.CE:bd

Factorization-caching procedure

1. Factor A = A4,..., A, only once (expensive)
2. Solve all linear systems using the same factorization (cheap)

Solve many “at the price of one”

18

(Sparse) LU factorization

Every nonsingular matrix A can be factored as
A=P.LUP, —— PlAP' =LU
P,., P. permutation, L lower triangular, U upper triangular

Permutations

» Reorder rows P, and columns P. of A to (heuristically) get sparser L, U
» P.. P. depend on sparsity pattern and values of A

Cost

- If A dense, typically O(n?) but usually much less
» |t depends on the number of nonzeros in A, sparsity pattern, etc.

19

(Sparse) LU solution

Az =b, = P.LUP.xz =Db

Iterations

1. Permutation: Solve P,.z; = b (0 flops)

2. Forward substitution: Solve Lzy = z; (n* flops)
3. Backward substitution: Solve Uzs = 25 (n* flops)
4. Permutation: Solve P.x = z3 (0 flops)

Cost
Factor + Solve ~ O(n?)
Just solve (prefactored) ~ O(n?)

20

(Sparse) Cholesky factorization

Every positive definite matrix A can be factored as
A=PLL"P* — P'AP=LL"

P permutation, L lower triangular

Permutations

» Reorder rows/cols of A with P to (heuristically) get sparser L
» P depends only on sparsity pattern of A (unlike LU factorization)
* |f Aisdense, wecanset P =1

Cost
- If A dense, typically O(n?°) but usually much less
» |t depends on the number of nonzeros in A, sparsity pattern, etc.
» Typically 50% faster than LU (need to find only one matrix)

21

(Sparse) Cholesky solution

Ar=b, = PLL'P'x=10

Iterations

1. Permutation: Solve Pz; = b (0 flops)

2. Forward substitution: Solve Lzy = z; (n* flops)

3. Backward substitution: Solve L' z5 = z5 (n? flops)
4. Permutation: Solve P!z = z5 (0 flops)

Cost
Factor + Solve ~ O(n?)
Just solve (prefactored) ~ O(n?)

22

“Realistic” simplex implementation

Complexity of a single simplex iteration

1. Compute the reduced costs ¢ 4. Compute search direction d with

d: =1and Agdg = — A
. Solve ALp = cp / o /

cc=c—A'p 5. If dg > 0, the problem is unbounded

_ and the optimal value is —oc. break
2. If ¢ > 0, x optimal. break

-
- - 6. Compute step length 0* = ' -
3. Choose j such that ¢; < 0 pu P 1eng fieBld, <0 (di)

/. Define y such that y = « + 6*d

8. Get new basis B (i exits and j enters)

Bottleneck
“same” two linear systems
24

Linear system solutions

Very similar linear LU factorization Easy linear systems
systems O(n?) flops O(n?) flops
ALp = cp P'UYLYP'p = cp

—— Ap = P.LUPF.
ABdB — —Aj v PTLUPCdB — —AjCB

Factorization Is expensive

Do we need to recompute it at every iteration?
25

Basis update

o O =

o DN

Index update

* j enters (x; becomes 6%)
» ¢ = B(/) exists (x; becomes 0)

N DN

=N DN

o DN

= O O

o O =

o = O

T

o O O

b—‘OOI

o O O

Example
B=1{4,1,6} —

O DO

T

|
oS O O

Basis matrix change

Ag = Ap + (A; — A)e,

B=1{4,1,2}

e 2 enters
* 6 = B(3) exists

o O O

;
0
1_

20

Basis update

Rank-1 update
Ag = Ap + (A; — Aye,

Forrest-Tomlin update O(m?)
« Given: A = LU))
» Goal: compute Az = LRU (same L, lower tri. R, upper tri. U)
1. L' A =U+ (L7'A; —Uep)el =U
2. LU factorization U = RU via elimination (O(m?))

Remarks

» Implemented in modern sparse solvers
« Accumulates errors (we need to refactor B from scratch once in a while)
- Many more algorithms: Block-LU, Bartels-Golub-Reid, etc. 57

Realistic (revised) simplex method

Initialization
* a basic feasible solution z]
» abasismatrix Ag = |Apny ..., AB@m)

Iteration steps Per-iteration cost O(m?)

1. Compute the reduced costs ¢
5. It dg > 0, the problem is unbounded

+ Solve App = cp (O(m?)) and the optimal value iIs —oco. break
cc=c—Alp
N : L
2. If ¢ > 0, = optimal. break 6. Compute step length 07 = min_ (d.)
3. Choose j such that ¢; <0 7. Define y such that y = = + 6*d
4. Compute search direction. d with g @Get new basis Ap = Ap + (A; — A;)eT
d;i =1and Agdp = — A, (O(m?)) rank-1 factor update (i exits and j enters) ((O(m*?)) 8

Inequality form

minimize —10x1 — 1229 — 1225

subjectto x1 + 29 + 223 < 20
201 + 0 + 223 < 20
201 + 229 + 3 < 20

L1, L2,L3 2 0

Standard form

minimize —10x7 — 1225 — 125
o
— — fL‘2 — —
1 2 2 1 0 0 20
: L3
subjectto (2 1 2 0 1 O = |20
XL
2 2 10 0 1] | 20
i 1|z, Y
|6 30

Example
Start

Initialize
r = (0,0,0, 20, 20, 20)

minimize
subject to

A = |0

CTZE

Axr =0
xr >0

c=(—10,-12,-12,0,0,0)

1 2 2 1 0 0
A=12 1 2 0 1 0

2 2 10 0 1
b = (20, 20, 20)

L3

31

Current point

x = (0,0,0, 20, 20, 20)
uEe):gimele cw =0
Basis: {4,5,6}
I 0 O
Ap=1(0 1 0O
0 0 1

Reduced costs ¢ = ¢
Solve Abp=cg = p=cg=0
c=c— Alp=c

Direction d = (1,0,0,—-1,-2,-2), j=1
Solve ABdB — —Aj — dp = (—1, —2, —2)

Step 6* =10, =5

0* = min (—x,;/d;) = min{20, 10, 10
{iﬁlgo}(z;/d;) = min{ h

New z < x + 6*d = (10,0, 0, 10,0, 0)

c=(—10,—12,-12,0,0,0)

1 2 2 1 0 0
A=12 1 2 0 1 0
2 2 10 0 1
b = (20, 20, 20)
L3
L1

32

Current point

Examp|e v = (10, 0,0, 10,0, 0)
lteration 2 c o =—100
Basis: {4,1,6}
1 1 0
Ag=10 2 0
0 2 1

Reduced costs ¢ = (0,—7,—2,0,5,0)
Solve Abp=cg = p=(0,-5,0)
c=c—A'p=(0,-7,-2,0,5,0)

Direction d = (—-0.5,1,0,—1.5,0,—1), j =2
Solve Agdp = —Aj = dp = (—1.5, —0.9, —1)

Step 0" =0, =6

0* = . — 4 dz — ml 666, 20, 0
min (—;/d;) = min }

New z < x + 6*d = (10,0, 0, 10,0, 0)

c=(—10,—12,-12,0,0,0)

1 2 2 1 0 0
A=12 1 2 0 1 0
2 2 10 0 1
b = (20, 20, 20)
L3
L1

33

Current point c = (-10,-12,-12,0,0,0)

Example z = (10,0,0,10,0,0) e o 1 0
Iteration N _
eration 3 Basis: {4, 1,2} A 2 1 2 0 1 0
19 22100 1
Ar=10 2 1 b = (20, 20, 20)
0 2 2
Reduced costs ¢ = (0,0,—9,0, —2,7)
Solve ALp=cg = p=1(0,2,-T7) T3
c=c—A'p=1(0,0,-9,0,—2,7)
Direction d = (—1.5,1,1,—-2.5,0,0), 45 =3
Solve ABdB — —Aj — dp = (—2.5, —1.5, 1)
T

Step 0" =4, i=14
0* = j —x;/d;) = min{4, 6.67
{iﬁlf@(z;/d;) = min{ }
New x < = + 60*d = (4,4,4,0,0,0) T1

Current point

Example v = (4,4,4,0,0,0)
lteration 4 v =150
Basis: {3,1,2}
2 1 2
A =12 2 1
1 2 2

Reduced costs ¢ = (0,0,0,3.6,1.6,1.6)
Solve Atp=cg = p=(-3.6,-1.6,—1.6)
c=c—A"p=(0,0,0,3.6,1.6,1.6)

Optimal
— ¥ =(4,4,4,0,0,0)

Ol
[V
-

c=(—10,—12,-12,0,0,0)

1 2 2

A=12 1 9

2 2 1

b = (20, 20, 20)
L3

1 0 0
0 1 0

0 0 1

35

Simplex tableau implementation

Can we solve LPs by hand?

Minus
cost

Basic
variables

— —CRIp C1 ¢, <+—— Reduced costs
zp(1) \ |

— A A, AL A,
zp(1) \ |

People did it before computers were invented!

Nobody does it anymore...

36

Empirical complexity

Example with real solver
GLPK (open-source)

Code

numpy as np
CVXpPYy as Ccp

Output

.array([-10, -12, -12])
.array([[1l, 2
[2, 1

[2, 2
2

r 21,
r 21,
r 111)
0, 207)

GLPK Simplex Optimizer, v4.65
6 rows, 3 columns, 12 non-zeros

s 0: obj = 0.000000000e+00 1inf

& 3: obj = -1.360000000e+02 1inf
OPTIMAL LP SOLUTION FOUND

np.array([20,
len(c)

cp.Variable(n)
problem = cp.Problem(cp.Minimize(c @ x),
[A @ x <= b, x >= 0])
problem.solve(solver=cp.GLPK, verbose=True)

0.000e+00
0.000e+00

38

(3)
(0)

Average simplex complexity

Random LPs minimize clx n variables
subjectto Az <b 3n constraints
Iterations: O(n) Time: O(nn?) = O(n?)
8000- | —— Cubic polynomial

-------- Square polynomial

@)
-
-
-

40001

Number of iterations

DO
-]
-]
-

0 250 500 750 1000 0 250 500 750
/A n

1000

39

Numerical linear algebra and simplex implementation

Today, we learned to:

* ldentify the pros and cons of different methods to solve a linear system
* Derive the computational complexity of the factor-solve method
 Implement a “realistic” version of the simplex method

 Empirically analyze the average complexity of the simplex method

40

Next lecture

* |Linear optimization duality

41

