ORF522 – Linear and Nonlinear Optimization
4. The simplex method
Ed Forum

• Notebooks on GitHub: https://github.com/ORF522/companion

• Office hours change:
 Prof. Stellato: Thu 3:30pm-5:30pm
 Scander Mustapha: Mon: 1:30pm-3:30pm

• 10% Participation. The note should **summarize what you learned** in the last lecture, and **highlight the concepts that were most confusing** or that you would like to review. A note will receive full credit if: it is **submitted before the beginning of next lecture**, it is **related to the content** of the lecture, and it is **understandable** and coherent.

• Question: connection between geometry and standard form? Yes, they are equivalent (more in the next slides)
Recap
Equivalence

Theorem

Given a nonempty polyhedron $P = \{x \mid Ax \leq b\}$

Let $x \in P$

x is a vertex \iff x is an extreme point \iff x is a basic feasible solution
Basic feasible solution

\[P = \{ x \mid a_i^T x \leq b_i, \quad i = 1, \ldots, m \} \]
Basic feasible solution

\[P = \{ x \mid a_i^T x \leq b_i, \quad i = 1, \ldots, m \} \]

Active constraints at \(\bar{x} \)

\[\mathcal{I}(\bar{x}) = \{ i \in \{1, \ldots, m\} \mid a_i^T \bar{x} = b_i \} \]

Index of all the constraints satisfied as equality
Basic feasible solution

\[P = \{ x \mid a_i^T x \leq b_i, \quad i = 1, \ldots, m \} \]

Active constraints at \(\bar{x} \)

\[\mathcal{I}(\bar{x}) = \{ i \in \{1, \ldots, m\} \mid a_i^T \bar{x} = b_i \} \]

Index of all the constraints satisfied as equality

Basic solution \(\bar{x} \)

- \(\{a_i \mid i \in \mathcal{I}(\bar{x})\} \) has \(n \) linearly independent vectors
Basic feasible solution

$$P = \{ x \mid a_i^T x \leq b_i, \quad i = 1, \ldots, m \}$$

Active constraints at \bar{x}

$$\mathcal{I}(\bar{x}) = \{ i \in \{1, \ldots, m\} \mid a_i^T \bar{x} = b_i \}$$

Index of all the constraints satisfied as equality

Basic solution \bar{x}

• $\{a_i \mid i \in \mathcal{I}(\bar{x})\}$ has n linearly independent vectors

Basic feasible solution \bar{x}

• $\bar{x} \in P$
• $\{a_i \mid i \in \mathcal{I}(\bar{x})\}$ has n linearly independent vectors
Standard form polyhedra

Definition

Standard form LP

minimize \(c^T x \)
subject to \(Ax = b \)
\(x \geq 0 \)

Assumption

\(A \in \mathbb{R}^{m \times n} \) has full row rank \(m \leq n \)

Interpretation

\(P \) lives in \((n - m) \)-dimensional subspace
Basic solutions
Standard form polyhedra

\[P = \{ x \mid Ax = b, \ x \geq 0 \} \]

with \(A \in \mathbb{R}^{m \times n} \) has full row rank \(m \leq n \)

\(x \) is a **basic solution** if and only if

- \(Ax = b \)
- There exist indices \(B(1), \ldots, B(m) \) such that
 - columns \(A_{B(1)}, \ldots, A_{B(m)} \) are linearly independent
 - \(x_i = 0 \) for \(i \neq B(1), \ldots, B(m) \)

\(x \) is a **basic feasible solution** if \(x \) is a **basic solution** and \(x \geq 0 \)
From geometry to standard form

minimize \(c^T x \)
subject to \(Ax \leq b \)
From geometry to standard form

minimize \(c^T (x^+ - x^-) \)

subject to \(Ax \leq b \) \[\rightarrow \]

subject to \[
\begin{bmatrix}
A & -A & I
\end{bmatrix}
\begin{bmatrix}
x^+

x^-
s
\end{bmatrix} = b
\]

\((x^+, x^-, s) \geq 0\)
From geometry to standard form

minimize \[c^T x \]
subject to \[Ax \leq b \]
\[x \in \mathbb{R}^n \]
\[m \in \mathbb{Z}^+ \]

\[\tilde{c} \approx (c - c_0) \]

minimize \[c^T (x^+ - x^-) \]
subject to \[\begin{bmatrix} A & -A & I \end{bmatrix} \begin{bmatrix} x^+ \\ x^- \\ s \end{bmatrix} = b \]
\[(x^+, x^-, s) \geq 0 \]

\[\begin{align*}
\tilde{c}^T \tilde{x} \\
\tilde{A} \tilde{x} = b \\
\tilde{x} \geq 0
\end{align*} \]

Variables: \[\tilde{n} = 2n + m \]
(Equality) constraints: \[\tilde{m} = m \implies \text{active} \]
From geometry to standard form

minimize \(c^T (x^+ - x^-) \)
subject to \(Ax \leq b \)

\[
\begin{bmatrix}
A & -A & I
\end{bmatrix}
\begin{bmatrix}
x^+
\end{bmatrix}
= b
\]
\[
(x^+, x^-, s) \geq 0
\]

Variables: \(\tilde{n} = 2n + m \)
(Equality) constraints: \(\tilde{m} = m \rightarrow \text{active} \)

For a basic solution

We need \(\tilde{n} - \tilde{m} = 2n \)
active inequalities \(\Rightarrow \tilde{x}_i = 0 \) (non basic)
From geometry to standard form

minimize \(c^T (x^+ - x^-) \)
subject to \(Ax \leq b \)

\[
\begin{bmatrix}
A & -A & I
\end{bmatrix}
\begin{bmatrix}
x^+
-x^-
s
\end{bmatrix}
= b
\]
\((x^+, x^-, s) \geq 0\)

Variables: \(\tilde{n} = 2n + m \)
(Equality) constraints: \(\tilde{m} = m \implies \text{active} \)

For a basic solution \(\implies \) We need \(\tilde{n} - \tilde{m} = 2n \)
active inequalities \(\Rightarrow \tilde{x}_i = 0 \) (non basic)

Which corresponds to \(m \) inequalities inactive \(\Rightarrow \tilde{x}_i > 0 \) (basic)
From geometry to standard form

minimize \(c^T(x^+ - x^-) \)
subject to \(Ax \leq b \)

minimize \(\tilde{c}^T \tilde{x} \)
subject to \(\tilde{A} \tilde{x} = b \)
\(\tilde{x} \geq 0 \)

Variables: \(\tilde{n} = 2n + m \)
(Equality) constraints: \(\tilde{m} = m \implies \text{active} \)

For a basic solution

We need \(\tilde{n} - \tilde{m} = 2n \)
active inequalities \(\Rightarrow \tilde{x}_i = 0 \) (non basic)

Which corresponds to \(m \) inequalities inactive \(\Rightarrow \tilde{x}_i > 0 \) (basic)
Constructing basic solution

1. Choose any m independent columns of A: $A_{B(1)}, \ldots, A_{B(m)}$
2. Let $x_i = 0$ for all $i \neq B(1), \ldots, B(m)$
3. Solve $Ax = b$ for the remaining $x_{B(1)}, \ldots, x_{B(m)}$
Constructing basic solution

1. Choose any m independent columns of A: $A_{B(1)}, \ldots, A_{B(m)}$
2. Let $x_i = 0$ for all $i \neq B(1), \ldots, B(m)$
3. Solve $Ax = b$ for the remaining $x_{B(1)}, \ldots, x_{B(m)}$

\[
\begin{align*}
\text{Basis} & \quad \text{Basis columns} & \quad \text{Basic variables} \\
A_B & = \begin{bmatrix} A_{B(1)} & A_{B(2)} & \cdots & A_{B(m)} \end{bmatrix}, & \quad x_B = \begin{bmatrix} x_{B(1)} \\ \vdots \\ x_{B(m)} \end{bmatrix} \\
\end{align*}
\]

\rightarrow Solve $A_Bx_B = b$
Constructing basic solution

1. Choose any m independent columns of A: $A_B(1), \ldots, A_B(m)$
2. Let $x_i = 0$ for all $i \neq B(1), \ldots, B(m)$
3. Solve $Ax = b$ for the remaining $x_{B(1)}, \ldots, x_{B(m)}$

Basis matrix

$$A_B = \begin{bmatrix} A_{B(1)} & A_{B(2)} & \ldots & A_{B(m)} \end{bmatrix}$$

Basis columns

Basic variables

$$x_B = \begin{bmatrix} x_{B(1)} \\ \vdots \\ x_{B(m)} \end{bmatrix}$$

Solve $A_B x_B = b$

If $x_B \geq 0$, then x is a basic feasible solution
Optimality of extreme points

minimize \(c^T x \)
subject to \(Ax \leq b \)

- \(P \) has at least one extreme point
- There exists an optimal solution \(x^* \)

Then, there exists an optimal solution which is an extreme point of \(P \)

We only need to search between extreme points
Conceptual algorithm

- Start at corner
- Visit neighboring corner that improves the objective
Today’s agenda
Readings: [Chapter 3, LO]

Simplex method
- Iterate between neighboring basic solutions
- Optimality conditions
- Simplex iterations
The simplex method

Top 10 algorithms of the 20th century

1946: Metropolis algorithm
1947: Simplex method
1950: Krylov subspace method
1951: The decompositional approach to matrix computations
1957: The Fortran optimizing compiler
1959: QR algorithm
1962: Quicksort
1965: Fast Fourier transform
1977: Integer relation detection
1987: Fast multipole method
The simplex method
Top 10 algorithms of the 20th century

1946: Metropolis algorithm
1947: Simplex method
1950: Krylov subspace method
1951: The decompositional approach to matrix computations
1957: The Fortran optimizing compiler
1959: QR algorithm
1962: Quicksort
1965: Fast Fourier transform
1977: Integer relation detection
1987: Fast multipole method

[SIAM News (2000)]
Neighboring basic solutions
Neighboring solutions

Two basic solutions are **neighboring** if their basic indices differ by exactly one variable.
Neighboring solutions

Two basic solutions are neighboring if their basic indices differ by exactly one variable

Example

\[
\begin{bmatrix}
1 & -1 & 0 & 3 & -2 \\
2 & 0 & -1 & -1 & 0 \\
0 & 2 & 4 & -1 & 4 \\
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
x_5 \\
\end{bmatrix}
=
\begin{bmatrix}
-5 \\
-1 \\
14 \\
\end{bmatrix}
\]
Neighboring solutions

Two basic solutions are \textbf{neighboring} if their basic indices differ by exactly one variable

\textbf{Example}

\[
\begin{align*}
A & = \begin{bmatrix}
1 & -1 & 0 & 3 & -2 \\
2 & 0 & -1 & -1 & 0 \\
0 & 2 & 4 & -1 & 4
\end{bmatrix} \\
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
x_5
\end{bmatrix} & = \begin{bmatrix}
b_1 \\
b_2 \\
b_3 \\
b_4 \\
b_5
\end{bmatrix}
\end{align*}
\]

\[B = \{1, 3, 5\} \quad x_2 = x_4 = 0\]

\[
A_B x_B = b \quad \rightarrow \quad x_B = \begin{bmatrix}
x_1 \\
x_3 \\
x_5
\end{bmatrix} = \begin{bmatrix}
0 \\
1 \\
2.5
\end{bmatrix}
\]
Neighboring solutions

Two basic solutions are neighboring if their basic indices differ by exactly one variable.

Example

\[
\begin{bmatrix}
1 & -1 & 0 & 3 & -2 \\
2 & 0 & -1 & -1 & 0 \\
0 & 2 & 4 & -1 & 4 \\
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
x_5 \\
\end{bmatrix}
=
\begin{bmatrix}
b_1 \\
b_2 \\
b_3 \\
\end{bmatrix}
\]

\(B = \{1, 3, 5\}\) \quad \(x_2 = x_4 = 0\)

\(A_Bx_B = b\) \quad \(x_B = \begin{bmatrix} x_1 \\ x_3 \\ x_5 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 2.5 \end{bmatrix}\)

\(\bar{B} = \{1, 3, 4\}\) \quad \(y_2 = y_5 = 0\)

\(A_By_B = b\) \quad \(y_B = \begin{bmatrix} y_1 \\ y_3 \\ y_4 \end{bmatrix} = \begin{bmatrix} 0.1 \\ 3.0 \\ -1.7 \end{bmatrix}\)
Feasible directions

Conditions

\[P = \{ x \mid Ax = b, \ x \geq 0 \} \]

Given a basis matrix \(A_B = \begin{bmatrix} A_B(1) & \cdots & A_B(m) \end{bmatrix} \)
we have basic feasible solution \(x \):

\begin{itemize}
 \item \(x_B \) solves \(A_B x_B = b \)
 \item \(x_i = 0, \ \forall i \neq B(1), \ldots, B(m) \)
\end{itemize}
Feasible directions

Conditions

\[P = \{ x \mid Ax = b, \ x \geq 0 \} \]

Given a basis matrix \(A_B = \begin{bmatrix} A_{B(1)} & \ldots & A_{B(m)} \end{bmatrix} \)

we have basic feasible solution \(x \):

- \(x_B \) solves \(A_B x_B = b \)
- \(x_i = 0, \ \forall i \neq B(1), \ldots, B(m) \)

Let \(x \in P \), a vector \(d \) is a **feasible direction** at \(x \)

if \(\exists \theta > 0 \) for which \(x + \theta d \in P \)

Feasible direction \(d \)

- \(A(x + \theta d) = b \implies Ad = 0 \)
- \(x + \theta d \geq 0 \)
Feasible directions

Computation

Nonbasic indices $(\forall j \neq 0)$

- $d_j = 1 \longrightarrow \text{Basic direction}$
- $d_k = 0, \forall k \notin \{j, B(1), \ldots, B(m)\}$

Feasible direction d

- $A(x + \theta d) = b \implies Ad = 0$
- $x + \theta d \geq 0$
Feasible directions

Computation

Nonbasic indices
• \(d_j = 1 \) → Basic direction
• \(d_k = 0 \), \(\forall k \notin \{j, B(1), \ldots, B(m)\} \)

Basic indices

\[
Ad = 0 \Rightarrow \sum_{i=1}^{n} A_i d_i = A_B d_B + A_j = 0 \Rightarrow d_B = -A_B^{-1} A_j
\]
Feasible directions

Computation

Nonbasic indices
• $d_j = 1$ → Basic direction
• $d_k = 0, \forall k \notin \{j, B(1), \ldots, B(m)\}$

Basic indices

\[Ad = 0 = \sum_{i=1}^{n} A_i d_i = A_g d_B + A_j = 0 \implies d_B = -A_g^{-1} A_j \]

Non-negativity (non-degenerate assumption)
• Non-basic variables: $x_i = 0$. Nonnegative direction $d_i \geq 0$
• Basic variables: $x_B > 0$. Therefore $\exists \theta > 0$ such that $x_B + \theta d_B \geq 0$

Feasible direction d
• $A(x + \theta d) = b \implies Ad = 0$
• $x + \theta d \geq 0$
Feasible directions

Example

\[P = \{ x \mid x_1 + x_2 + x_3 = 2, \quad x \geq 0 \} \]

\[x = (2, 0, 0) \quad B = \{1\} \]
Feasible directions

Example

\[P = \{ x \mid x_1 + x_2 + x_3 = 2, \quad x \geq 0 \} \]

\[x = (2, 0, 0) \quad B = \{1\} \]

Now

Basic index \(j = 3 \) \[\rightarrow d = (-1, 0, 1) \]

\[A_B d_B = -A_j \quad \Rightarrow \quad d_B = -1 \]
How does the cost change?

Cost improvement

\[c^T (x + \theta d) - c^T x = \theta c^T d \]
How does the cost change?

Cost improvement

\[c^T(x + \theta d) - c^T x = \theta c^T d \]
How does the cost change?

Cost improvement

\[c^T (x + \theta d) - c^T x = \theta c^T d \]

New cost

Old cost
How does the cost change?

Cost improvement

\[c^T(x + \theta d) - c^T x = \theta c^T d \]

New cost \quad Old cost

We call \(\bar{c}_j \) the **reduced cost** of (introducing) variable \(x_j \) in the basis

\[
\bar{c}_j = c^T d = \sum_{i=1}^{n} c_i \bar{d}_i = c_j + c_B^T d_B = c_j - c_B^T A_B^{-1} A_j
\]
Reduced costs

Interpretation
Change in objective/marginal cost of adding x_j to the basis

$$\bar{c}_j = c_j - c_B^T A_B^{-1} A_j$$

- $\bar{c}_j > 0$: adding x_j will increase the objective (bad)
- $\bar{c}_j < 0$: adding x_j will decrease the objective (good)
Reduced costs

Interpretation
Change in objective/marginal cost of adding x_j to the basis

$$\bar{c}_j = c_j - c_B^T A_B^{-1} A_j$$

Cost per-unit increase of variable x_j

- $\bar{c}_j > 0$: adding x_j will increase the objective (bad)
- $\bar{c}_j < 0$: adding x_j will decrease the objective (good)
Reduced costs

Interpretation
Change in objective/marginal cost of adding \(x_j \) to the basis

\[
\bar{c}_j = c_j - c_B^T A_B^{-1} A_j
\]

Cost per-unit increase of variable \(x_j \)

Cost to change other variables compensating for \(x_j \) to enforce \(Ax = b \)

- \(\bar{c}_j > 0 \): adding \(x_j \) will increase the objective (bad)
- \(\bar{c}_j < 0 \): adding \(x_j \) will decrease the objective (good)
Reduced costs

Interpretation
Change in objective/marginal cost of adding x_j to the basis

$$\bar{c}_j = c_j - c_B^T A_B^{-1} A_j$$

Cost per-unit increase of variable x_j

Cost to change other variables compensating for x_j to enforce $Ax = b$

- $\bar{c}_j > 0$: adding x_j will increase the objective (bad)
- $\bar{c}_j < 0$: adding x_j will decrease the objective (good)

Reduced costs for basic variables is 0

$$\bar{c}_B(i) = c_B(i) - c_B^T A_B^{-1} A_B(i) = c_B(i) - c_B^T (A_B^{-1} A_B) e_i$$

$$= c_B(i) - c_B^T e_i = c_B(i) - c_B(i) = 0$$
Vector of reduced costs

Reduced costs
\[\bar{c}_j = c_j - c_B^T A_B^{-1} A_j \]

Full vector in one shot?
\[\bar{c} = (\bar{c}_1, \ldots, \bar{c}_n) \]
Vector of reduced costs

Reduced costs

\[\bar{c}_j = c_j - c_B^T A_B^{-1} A_j \]

Isolate basis \(B \)-related components \(\bar{p} \) (they are the same across \(j \))

\[\bar{c}_j = c_j - A_j^T (A_B^{-1})^T c_B = c_j - A_j^T \bar{p} \]

Full vector in one shot?

\[\bar{c} = (\bar{c}_1, \ldots, \bar{c}_n) \]
Vector of reduced costs

Reduced costs
\[\bar{c}_j = c_j - c_B^T A_B^{-1} A_j \]

Isolate basis \(B \)-related components \(p \)
(they are the same across \(j \))
\[\bar{c}_j = c_j - A_j^T (A_B^{-1})^T c_B = c_j - A_j^T p \]

Full vector in one shot?
\[\bar{c} = (\bar{c}_1, \ldots, \bar{c}_n) \]

Obtain \(p \) by solving linear system
\[p = (A_B^{-1})^T c_B \quad \Rightarrow \quad A_B^T p = c_B \]

Note: \((M^{-1})^T = (M^T)^{-1} \)
for any square invertible \(M \)
Vector of reduced costs

Reduced costs
\[\bar{c}_j = c_j - c_B^T A_B^{-1} A_j \]

Isolate basis \(B \)-related components \(p \)
(they are the same across \(j \))
\[\bar{c}_j = c_j - A_j^T (A_B^{-1})^T c_B = c_j - A_j^T p \]

Full vector in one shot?
\[\bar{c} = (\bar{c}_1, \ldots, \bar{c}_n) \]

Obtain \(p \) by solving linear system
\[p = (A_B^{-1})^T c_B \quad \Rightarrow \quad A_B^T p = c_B \]

Note: \((M^{-1})^T = (M^T)^{-1} \)
for any square invertible \(M \)

Computing reduced cost vector
1. Solve \(A_B^T p = c_B \)
2. \(\bar{c} = c - A^T p \)
Optimality conditions
Optimality conditions

Theorem

Let x be a basic feasible solution associated with basis matrix A_B
Let \bar{c} be the vector of reduced costs.

If $\bar{c} \geq 0$, then x is optimal
Optimality conditions

Theorem

Let x be a basic feasible solution associated with basis matrix B
Let \bar{c} be the vector of reduced costs.

If $\bar{c} \geq 0$, then x is optimal

Remark

This is a stopping criterion for the simplex algorithm.
If the neighboring solutions do not improve the cost, we are done (because of convexity).
Optimality conditions

Proof

For a basic feasible solution x with basis B the reduced costs are $\bar{c} \geq 0$.
Optimality conditions

Proof

For a basic feasible solution \(x \) with basis \(B \) the reduced costs are \(\bar{c} \geq 0 \).

Consider any feasible solution \(y \) and define \(d = y - x \).
Optimality conditions

Proof

For a basic feasible solution x with basis B the reduced costs are $\bar{c} \geq 0$. Consider any feasible solution y and define $d = y - x$

Since x and y are feasible, then $Ax = Ay = b$ and $Ad = 0$

$$Ad = A_B d_B + \sum_{i \in N} A_i d_i = 0 \quad \Rightarrow \quad d_B = -\sum_{i \in N} A_B^{-1} A_i d_i$$

N are the nonbasic indices
Optimality conditions

Proof

For a basic feasible solution x with basis B the reduced costs are $\bar{c} \geq 0$. Consider any feasible solution y and define $d = y - x$.

Since x and y are feasible, then $Ax = Ay = b$ and $Ad = 0$

$$Ad = A_B d_B + \sum_{i \in N} A_i d_i = 0 \quad \Rightarrow \quad d_B = -\sum_{i \in N} A_B^{-1} A_i d_i$$

The change in objective is

$$c^T d = c_B^T d_B + \sum_{i \in N} c_i d_i = \sum_{i \in N} (c_i - c_B^T A_B^{-1} A_i) d_i = \sum_{i \in N} \bar{c}_i d_i$$
Optimality conditions

Proof

For a basic feasible solution x with basis B the reduced costs are $\bar{c} \geq 0$.
Consider any feasible solution y and define $d = y - x$

Since x and y are feasible, then $Ax = Ay = b$ and $Ad = 0$

$$Ad = A_B d_B + \sum_{i \in N} A_i d_i = 0 \quad \Rightarrow \quad d_B = - \sum_{i \in N} A_B^{-1} A_i d_i$$

The change in objective is

$$c^T d = c_B^T d_B + \sum_{i \in N} c_i d_i = \sum_{i \in N} (c_i - c_B^T A_B^{-1} A_i) d_i = \sum_{i \in N} \bar{c}_i d_i$$

Since $y \geq 0$ and $x_i = 0$, $i \in N$, then $d_i = y_i - x_i \geq 0$, $i \in N$

$$c^T d = c^T (y - x) \geq 0 \quad \Rightarrow \quad c^T y \geq c^T x.$$
Simplex iterations
Stepsizes

What happens if some $\tilde{c}_j < 0$?
We can decrease the cost by bringing x_j into the basis
Stepsize

What happens if some $c_j < 0$?
We can decrease the cost by bringing x_j into the basis

How far can we go?

$$\theta^* = \max\{\theta \mid \theta \geq 0 \text{ and } x + \theta d \geq 0\}$$

d is the j-th basic direction
Stepsize

What happens if some $\bar{c}_j < 0$?
We can decrease the cost by bringing x_j into the basis

How far can we go?

$$\theta^* = \max \{ \theta \mid \theta \geq 0 \text{ and } x + \theta d \geq 0\}$$

d is the j-th basic direction

Unbounded
If $d \geq 0$, then $\theta^* = \infty$. The LP is unbounded.
Stepsizes

What happens if some $\bar{c}_j < 0$?
We can decrease the cost by bringing x_j into the basis

How far can we go?

$$\theta^* = \max\{\theta \mid \theta \geq 0 \text{ and } x + \theta d \geq 0\}$$

d is the j-th basic direction

Unbounded
If $d \geq 0$, then $\theta^* = \infty$. The LP is unbounded.

Bounded
If $d_i < 0$ for some i, then

$$\theta^* = \min_{\{i \mid d_i < 0\}} \left(-\frac{x_i}{d_i} \right) = \min_{\{i \in B \mid d_i < 0\}} \left(-\frac{x_i}{d_i} \right)$$

(Since $d_i \geq 0$, $i \notin B$)
Moving to a new basis

Next feasible solution

\[x + \theta^* d \]
Moving to a new basis

Next feasible solution

\[x + \theta^* d \]

Let \(B(\ell) \in \{B(1), \ldots, B(m)\} \) be the index such that \(\theta^* = -\frac{x_{B(\ell)}}{d_{B(\ell)}} \). Then,

\[x_{B(\ell)} + \theta^* d_{B(\ell)} = 0 \]
Moving to a new basis

Next feasible solution

\[x + \theta^* d \]

Let \(B(\ell) \in \{ B(1), \ldots, B(m) \} \) be the index such that \(\theta^* = -\frac{x_{B(\ell)}}{d_{B(\ell)}} \). Then,

\[x_{B(\ell)} + \theta^* d_{B(\ell)} = 0 \]

New solution

- \(x_{B(\ell)} \) becomes 0 (exits)
- \(x_j \) becomes \(\theta^* \) (enters)

\[d_J = 1 \]
Moving to a new basis

Next feasible solution

\[x + \theta^* d \]

Let \(B(\ell) \in \{ B(1), \ldots, B(m) \} \) be the index such that \(\theta^* = -\frac{x_{B(\ell)}}{d_{B(\ell)}} \). Then,

\[x_{B(\ell)} + \theta^* d_{B(\ell)} = 0 \]

New solution

- \(x_{B(\ell)} \) becomes 0 (exits)
- \(x_j \) becomes \(\theta^* \) (enters)

New basis

\[
A_{\bar{B}} = \begin{bmatrix}
A_{B(1)} & \cdots & A_{B(\ell-1)} & [A_j] & A_{B(\ell+1)} & \cdots & A_{B(m)}
\end{bmatrix}
\]
An iteration of the simplex method

First part

We start with

- a basic feasible solution \(x \)
- a basis matrix \(A_B = \begin{bmatrix} A_B(1) & \cdots & A_B(m) \end{bmatrix} \)

1. Compute the reduced costs \(\bar{c} \)
 - Solve \(A_B^T p = c_B \)
 - \(\bar{c} = c - A_B^T p \)

2. If \(\bar{c} \geq 0 \), \(x \) optimal. break

3. Choose \(j \) such that \(\bar{c}_j < 0 \)
An iteration of the simplex method
Second part

4. Compute search direction \(d \) with \(d_j = 1 \) and \(A_B d_B = -A_j \)

5. If \(d_B \geq 0 \), the problem is **unbounded** and the optimal value is \(-\infty\). **break**

6. Compute step length \(\theta^* = \min_{\{i \in B | d_i < 0\}} \left(-\frac{x_i}{d_i} \right) \)

7. Define \(y \) such that \(y = x + \theta^* d \)

8. Get new basis \(\tilde{B} \) (\(i \) exits and \(j \) enters)
Example

\[P = \{ x \mid x_1 + x_2 + x_3 = 2, \quad x \geq 0 \} \]

\[x = (2, 0, 0) \quad B = \{1\} \]

Basic index \(j = 3 \quad d = (-1, 0, 1) \)

\[d_j = 1 \]

\[A_B d_B = -A_j \quad \Rightarrow \quad d_B = -1 \]
Example

\[P = \{ x \mid x_1 + x_2 + x_3 = 2, \quad x \geq 0 \} \]

\[x = (2, 0, 0) \quad B = \{1\} \]

Basic index \(j = 3 \quad d = (-1, 0, 1) \)

\[d_j = 1 \]

\[A_B d_B = -A_j \quad \Rightarrow \quad d_B = -1 \]

Stepsise \(\theta^* = -\frac{x_1}{d_1} = 2 \)
Example

\[P = \{ x \mid x_1 + x_2 + x_3 = 2, \quad x \geq 0 \} \]

\[x = (2, 0, 0) \quad B = \{1\} \]

Basic index \(j = 3 \) \(\Rightarrow \) \(d = (-1, 0, 1) \)

\[d_j = 1 \quad A_B d_B = -A_j \quad \Rightarrow \quad d_B = -1 \]

Stepsizes \(\theta^* = -\frac{x_1}{d_1} = 2 \)

New solution \(y = x + \theta^* d = (0, 0, 2) \quad \bar{B} = \{3\} \)
Finite convergence

Assume that

- \(P = \{x \mid Ax = b, x \geq 0\} \) not empty
- Every basic feasible solution non degenerate
Finite convergence

Assume that

\(P = \{ x \mid Ax = b, x \geq 0 \} \) not empty
\(\) Every basic feasible solution non degenerate

Then

\(\) The simplex method terminates after a finite number of iterations
\(\) At termination we either have one of the following

\(\) an optimal basis \(B \)
\(\) a direction \(d \) such that \(Ad = 0, \ d \geq 0, \ c^T d < 0 \) and the optimal cost is \(-\infty \)
Finite convergence
Proof sketch

At each iteration the algorithm improves
• by a positive amount θ^*
• along the direction d such that $c^T d < 0$
Finite convergence
Proof sketch

At each iteration the algorithm improves
• by a positive amount θ^*
• along the direction d such that $c^T d < 0$

Therefore
• The cost strictly decreases
• No basic feasible solution can be visited twice
Finite convergence
Proof sketch

At each iteration the algorithm improves
• by a **positive** amount θ^*
• along the **direction** d such that $c^T d < 0$

Therefore
• The cost strictly decreases
• No basic feasible solution can be visited twice

Since there is a **finite number of basic feasible solutions**
The algorithm **must eventually terminate**
The simplex method

Today, we learned to:

• **Iterate** between basic feasible solutions

• **Verify** optimality and unboundedness conditions

• **Apply** a single iteration of the simplex method

• **Prove** finite convergence of the simplex method in the non-degenerate case
Next lecture

- Finding initial basic feasible solution
- Degeneracy
- Complexity