### **ORF522 – Linear and Nonlinear Optimization**

4. The simplex method

### Ed Forum

- Notebooks on GitHub: https://github.com/ORF522/companion
- Office hours change: Prof. Stellato: Thu 3:30pm-5:30pm Scander Mustapha: Mon: 1:30pm-3:30pm
- 10% Participation. The note should **summarize what you learned** in the last lecture, and **highlight the concepts that were most confusing** or that you would like to review. A note will receive full credit if: it is **submitted before the beginning of next lecture**, it is **related to the content** of the lecture, and it is **understandable** and coherent.
- Question: connection between geometry and standard form?
   Yes, they are equivalent (more in the next slides)

# Recap

### Equivalence

#### **Theorem**

Given a nonempty polyhedron  $P = \{x \mid Ax \leq b\}$ 



Let  $x \in P$ 

x is a vertex  $\iff x$  is an extreme point  $\iff x$  is a basic feasible solution

### Basic feasible solution

$$P = \{x \mid a_i^T x \le b_i, \quad i = 1, \dots, m\}$$

#### Active constraints at $\bar{x}$

$$\mathcal{I}(\bar{x}) = \{i \in \{1, \dots, m\} \mid a_i^T \bar{x} = b_i\}$$

Index of all the constraints satisfied as equality

#### Basic solution $\bar{x}$

•  $\{a_i \mid i \in \mathcal{I}(\bar{x})\}$  has n linearly independent vectors

#### Basic feasible solution $\bar{x}$

- $\bar{x} \in P$
- $\{a_i \mid i \in \mathcal{I}(\bar{x})\}$  has n linearly independent vectors



## Standard form polyhedra

#### **Definition**

#### Standard form LP

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x \geq 0 \end{array}$$

#### **Assumption**

 $A \in \mathbf{R}^{m \times n}$  has full row rank  $m \leq n$ 

#### Interpretation

P lives in (n-m)-dimensional subspace

#### Standard form polyhedron

$$P = \{x \mid Ax = b, \ x \ge 0\}$$



### **Basic solutions**

#### Standard form polyhedra

$$P = \{x \mid Ax = b, \ x \ge 0\}$$

with

 $A \in \mathbf{R}^{m \times n}$  has full row rank  $m \leq n$ 

 $\boldsymbol{x}$  is a **basic solution** if and only if

- Ax = b
- There exist indices  $B(1), \ldots, B(m)$  such that
  - columns  $A_{B(1)}, \ldots, A_{B(m)}$  are linearly independent
  - $x_i = 0$  for  $i \neq B(1), \dots, B(m)$

x is a basic feasible solution if x is a basic solution and  $x \ge 0$ 

### From geometry to standard form

$$c^T(x^+ - x^-)$$

 $(x^+, x^-, s) \ge 0$ 

$$Ax \leq b \longrightarrow \text{subject to}$$

Variables:  $\tilde{n} = 2n + m$ 

$$\tilde{n} = 2n + m$$

(Equality) constraints: 
$$\tilde{m} = m \Longrightarrow \text{active}$$

$$ilde{m} = m \Longrightarrow \mathsf{active}$$

Formal proof at Theorem 2.4 LO book

For a basic solution

We need 
$$\tilde{n} - \tilde{m} = 2n$$
 active inequalities  $\Rightarrow \tilde{x}_i = 0$  (non basic)

Which corresponds to m inequalities inactive  $\Rightarrow \tilde{x}_i > 0$  (basic)

### Constructing basic solution

- 1. Choose any m independent columns of A:  $A_{B(1)}, \ldots, A_{B(m)}$
- 2. Let  $x_i = 0$  for all  $i \neq B(1), ..., B(m)$
- 3. Solve Ax = b for the remaining  $x_{B(1)}, \ldots, x_{B(m)}$

Basis Basis columns Basic variables matrix 
$$A_B = \begin{bmatrix} & & & & \\ & A_{B(1)} & A_{B(2)} & \dots & A_{B(m)} \\ & & & & \end{bmatrix}, \quad x_B = \begin{bmatrix} x_{B(1)} \\ \vdots \\ x_{B(m)} \end{bmatrix} \longrightarrow \text{Solve } A_B x_B = b$$

If  $x_B \ge 0$ , then x is a basic feasible solution

### Optimality of extreme points

minimize  $c^T x$ subject to  $Ax \leq b$ 



Then, there exists an optimal solution which is an **extreme point** of P

We only need to search between extreme points



### Conceptual algorithm

- Start at corner
- Visit neighboring corner that improves the objective



### Today's agenda

Readings: [Chapter 3, LO]

#### Simplex method

- Iterate between neighboring basic solutions
- Optimality conditions
- Simplex iterations

### The simplex method

#### Top 10 algorithms of the 20th century

1946: Metropolis algorithm

1947: Simplex method

1950: Krylov subspace method

1951: The decompositional approach to matrix computations

1957: The Fortran optimizing compiler

1959: QR algorithm

1962: Quicksort

1965: Fast Fourier transform

1977: Integer relation detection

1987: Fast multipole method

#### **George Dantzig**



## Neighboring basic solutions

### Neighboring solutions

Two basic solutions are **neighboring** if their basic indices differ by exactly one variable



#### **Example**

$$\begin{bmatrix} 1 & -1 & 0 & 3 & -2 \\ 2 & 0 & -1 & -1 & 0 \\ 0 & 2 & 4 & -1 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -5 \\ -1 \\ 14 \end{bmatrix}$$

$$B = \{1, 3, 5\} \qquad x_2 = x_4 = 0$$

$$A_B x_B = b \longrightarrow x_B = \begin{bmatrix} x_1 \\ x_3 \\ x_5 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 2.5 \end{bmatrix}$$

$$B = \{1, 3, 5\} \qquad x_2 = x_4 = 0 \qquad \qquad \bar{B} = \{1, 3, 4\} \qquad y_2 = y_5 = 0$$

$$A_{\bar{B}} y_{\bar{B}} = b \longrightarrow y_{\bar{B}} = \begin{bmatrix} y_1 \\ y_3 \\ y_4 \end{bmatrix} = \begin{bmatrix} 0.1 \\ 3.0 \\ -1.7 \end{bmatrix}$$
15

### Feasible directions

#### **Conditions**

$$P = \{x \mid Ax = b, \ x \ge 0\}$$

Given a basis matrix 
$$A_B = \begin{bmatrix} A_{B(1)} & \dots & A_{B(m)} \end{bmatrix}$$

we have basic feasible solution x:

- $x_B$  solves  $A_B x_B = b$
- $x_i = 0, \ \forall i \neq B(1), \dots, B(m)$

Let  $x \in P$ , a vector d is a **feasible direction** at x if  $\exists \theta > 0$  for which  $x + \theta d \in P$ 



#### Feasible direction d

- $A(x + \theta d) = b \Longrightarrow Ad = 0$
- $x + \theta d \ge 0$

### Feasible directions

#### Computation

#### Feasible direction d

- $A(x + \theta d) = b \Longrightarrow Ad = 0$
- $x + \theta d \ge 0$

#### **Nonbasic indices**

- $d_j = 1$  Basic direction
- $d_k = 0, \ \forall k \notin \{j, B(1), \dots, B(m)\}$

#### **Basic indices**

$$Ad = 0 = \sum_{i=1}^{n} A_i d_i = A_B d_B + A_j = 0 \Longrightarrow d_B = -A_B^{-1} A_j$$

#### Non-negativity (non-degenerate assumption)

- Non-basic variables:  $x_i = 0$ . Nonnegative direction  $d_i \ge 0$
- Basic variables:  $x_B > 0$ . Therefore  $\exists \theta > 0$  such that  $x_B + \theta d_B \ge 0$

### Feasible directions

#### Example

$$P = \{x \mid x_1 + x_2 + x_3 = 2, \quad x \ge 0\}$$
  
 $x = (2, 0, 0)$   $B = \{1\}$ 

Nonbasic index  $j = 3 \longrightarrow d = (-1, 0, 1)$ 





### How does the cost change?

#### **Cost improvement**



We call  $\bar{c}_j$  the **reduced cost** of (introducing) variable  $x_j$  in the basis

$$\bar{c}_j = c^T d = \sum_{i=1}^n c_i d_i = c_j + c_B^T d_B = c_j - c_B^T A_B^{-1} A_j$$

### Reduced costs

#### Interpretation

Change in objective/marginal cost of adding  $x_j$  to the basis



Cost per-unit increase of variable  $\boldsymbol{x}_j$ 

Cost to change other variables compensating for  $x_j$  to enforce Ax = b

- $\bar{c}_j > 0$ : adding  $x_j$  will increase the objective (bad)
- $\bar{c}_j < 0$ : adding  $x_j$  will decrease the objective (good)

#### Reduced costs for basic variables is 0

$$\bar{c}_{B(i)} = c_{B(i)} - c_B^T A_B^{-1} A_{B(i)} = c_{B(i)} - c_B^T (A_B^{-1} A_B) e_i$$
$$= c_{B(i)} - c_B^T e_i = c_{B(i)} - c_{B(i)} = 0$$

### Vector of reduced costs

#### **Reduced costs**

$$\bar{c}_j = c_j - c_B^T A_B^{-1} A_j$$

Isolate basis B-related components p (they are the same across j)

$$\bar{c}_j = c_j - A_j^T (A_B^{-1})^T c_B = c_j - A_j^T p$$

#### Full vector in one shot?

$$\bar{c} = (\bar{c}_1, \dots, \bar{c}_n)$$

Obtain p by solving linear system

$$p = (A_B^{-1})^T c_B \quad \Rightarrow \quad A_B^T p = c_B$$

Note:  $(M^{-1})^T = (M^T)^{-1}$  for any square invertible M

#### Computing reduced cost vector

1. Solve 
$$A_B^T p = c_B$$

2. 
$$\bar{c} = c - A^T p$$

# Optimality conditions

### Optimality conditions

#### Theorem

Let x be a basic feasible solution associated with basis matrix  $A_B$  Let  $\bar{c}$  be the vector of reduced costs.

If  $\bar{c} \geq 0$ , then x is optimal

#### Remark

This is a **stopping criterion** for the simplex algorithm.

If the **neighboring solutions** do not improve the cost, we are done (because of convexity).

### **Optimality conditions**

#### **Proof**

For a basic feasible solution x with basis B the reduced costs are  $\bar{c} \geq 0$ .

Consider any feasible solution y and define d = y - x

Since x and y are feasible, then Ax = Ay = b and Ad = 0

$$Ad = A_B d_B + \sum_{i \in N} A_i d_i = 0 \quad \Rightarrow \quad d_B = -\sum_{i \in N} A_B^{-1} A_i d_i$$

N are the nonbasic indices

The change in objective is

$$c^{T}d = c_{B}^{T}d_{B} + \sum_{i \in N} c_{i}d_{i} = \sum_{i \in N} (c_{i} - c_{B}^{T}A_{B}^{-1}A_{i})d_{i} = \sum_{i \in N} \bar{c}_{i}d_{i}$$

Since  $y \ge 0$  and  $x_i = 0$ ,  $i \in N$ , then  $d_i = y_i - x_i \ge 0$ ,  $i \in N$ 

$$c^T d = c^T (y - x) \ge 0 \implies c^T y \ge c^T x.$$

# Simplex iterations

### Stepsize

What happens if some  $\bar{c}_i < 0$ ?

We can decrease the cost by bringing  $x_i$  into the basis

#### How far can we go?

$$\theta^* = \max\{\theta \mid \theta \ge 0 \text{ and } x + \theta d \ge 0\}$$

d is the j-th basic direction

#### Unbounded

If d > 0, then  $\theta^* = \infty$ . The LP is unbounded.

#### Bounded

If 
$$d_i < 0$$
 for some  $i$ , then

If 
$$d_i < 0$$
 for some  $i$ , then 
$$\theta^\star = \min_{\{i \mid d_i < 0\}} \left( -\frac{x_i}{d_i} \right) = \min_{\{i \in B \mid d_i < 0\}} \left( -\frac{x_i}{d_i} \right)$$

(Since 
$$d_i \geq 0, i \notin B$$
)

### Moving to a new basis

#### **Next feasible solution**

$$x + \theta^{\star} d$$

Let 
$$B(\ell)\in\{B(1),\dots,B(m)\}$$
 be the index such that  $\theta^\star=-\frac{x_{B(\ell)}}{d_{B(\ell)}}.$  Then,  $x_{B(\ell)}+\theta^\star d_{B(\ell)}=0$ 

#### **New solution**

- $x_{B(\ell)}$  becomes 0 (exits)
- $x_j$  becomes  $\theta^*$  (enters)

#### **New basis**

$$A_{\bar{B}} = \begin{bmatrix} A_{B(1)} & \dots & A_{B(\ell-1)} & A_j & A_{B(\ell+1)} & \dots & A_{B(m)} \end{bmatrix}$$

# An iteration of the simplex method First part

We start with

- a basic feasible solution x
- a basis matrix  $A_B = \begin{bmatrix} A_{B(1)} & \dots, A_{B(m)} \end{bmatrix}$

- 1. Compute the reduced costs  $\bar{c}$ 
  - Solve  $A_B^T p = c_B$
  - $\bar{c} = c A^T p$
- 2. If  $\bar{c} \geq 0$ , x optimal. break
- 3. Choose j such that  $\bar{c}_j < 0$

# An iteration of the simplex method Second part

- 4. Compute search direction d with  $d_j = 1$  and  $A_B d_B = -A_j$
- 5. If  $d_B \ge 0$ , the problem is **unbounded** and the optimal value is  $-\infty$ . **break**

6. Compute step length 
$$\theta^\star = \min_{\{i \in B | d_i < 0\}} \left( -\frac{x_i}{d_i} \right)$$

- 7. Define y such that  $y = x + \theta^* d$
- 8. Get new basis  $\bar{B}$  (i exits and j enters)

### Example

$$P = \{x \mid x_1 + x_2 + x_3 = 2, \quad x \ge 0\}$$

$$x = (2, 0, 0)$$
  $B = \{1\}$ 

Basic index 
$$j=3$$
  $\longrightarrow$   $d=(-1,0,1)$   $d_j=1$ 

$$A_B d_B = -A_j \quad \Rightarrow \quad d_B = -1$$

Stepsize 
$$\theta^{\star} = -\frac{x_1}{d_1} = 2$$

New solution 
$$y=x+\theta^{\star}d=(0,0,2)$$
  $\bar{B}=\{3\}$ 



### Finite convergence

#### **Assume** that

- $P = \{x \mid Ax = b, x \ge 0\}$  not empty
- Every basic feasible solution non degenerate

#### Then

- The simplex method terminates after a finite number of iterations
- At termination we either have one of the following
  - an optimal basis  $\boldsymbol{B}$
  - a direction d such that  $Ad=0,\ d\geq 0,\ c^Td<0$  and the optimal cost is  $-\infty$

### Finite convergence

#### **Proof sketch**

At each iteration the algorithm improves

- by a **positive** amount  $\theta^*$
- along the direction d such that  $c^T d < 0$

#### Therefore

- The cost strictly decreases
- No basic feasible solution can be visited twice

Since there is a **finite number of basic feasible solutions**The algorithm **must eventually terminate** 

### The simplex method

#### Today, we learned to:

- Iterate between basic feasible solutions
- Verify optimality and unboundedness conditions
- Apply a single iteration of the simplex method
- Prove finite convergence of the simplex method in the non-degenerate case

### Next lecture

- Finding initial basic feasible solution
- Degeneracy
- Complexity