ORF522 – Linear and Nonlinear Optimization

20. Sequential Convex Programming
Ed forum

• Theorem of lower bounds (Nesterov'83). The theorem declares the existence of a function f, and gives its lower bound for first order methods; but how does it give lower bounds for all convex L-smooth functions?

• Can we include more previous directions instead of just rewinding 1 step in the momentum acceleration scheme? Yes! Anderson Acceleration
Today’s lecture
[Chapter 4 and 17, Numerical Optimization, Nocedal and Wright]
[Stanford ee364b Lecture Notes, Boyd]

Convex algorithms to solve nonconvex optimization problems

• Sequential convex programming
• Trust region methods
• Building convex approximations
• Regularized trust region methods
• Difference of convex programming
Methods for nonconvex optimization

Convex optimization algorithms: global and typically fast

Nonconvex optimization algorithms: must give up one, global or fast

• Local methods: fast but not global
 Need not find a global (or even feasible) solution.
 They cannot certify global optimality because
 KKT conditions are not sufficient.

• Global methods: global but often slow
 They find a global solution and certify it.
Sequential Convex Programming
Sequential convex programming (SCP)

Local optimization method that leverages convex optimization

Subproblems are convex \rightarrow \text{we can solve them efficiently}

It is a heuristic

- It can fail to find an optimal (or even feasible point)
- Results depend on the starting point.
 We can run the algorithm from many initial points and take the best result.

It often works very well
it finds a feasible point with good objective value (often optimal!)
Gradient descent as SCP

Problem
minimize \(f(x) \)

Iterates
\[x^{k+1} = x^k - t_k \nabla f(x^k) \]

Quadratic approximation, replace \(\nabla^2 f(x^k) \) with \(\frac{1}{t_k} I \)

\[x^{k+1} = \arg\min_y f(x^k) + \nabla f(x^k)^T (y - x^k) + \frac{1}{2t_k} \|y - x^k\|^2 \]

strongly convex problem
The problem

\[
\begin{align*}
\text{minimize} & \quad f(x) \\
\text{subject to} & \quad g_i(x) \leq 0, & i = 1, \ldots, m \\
& \quad h_i(x) = 0, & i = 1, \ldots, p
\end{align*}
\text{with } x \in \mathbb{R}^n
\]

- \(f \) and \(g_i \) can be nonconvex
- \(h_i \) can be nonaffine
Trust region methods
Main idea

minimize \[f(x) \]
subject to \[g_i(x) \leq 0, \quad i = 1, \ldots, m \]
\[h_i(x) = 0, \quad i = 1, \ldots, p \]

\[\text{iterate } x^k \]
\text{trust region } \mathcal{T}^k

minimize \[\hat{f}(x) \]
subject to \[\hat{g}_i(x) \leq 0, \quad i = 1, \ldots, m \]
\[\hat{h}_i(x) = 0, \quad i = 1, \ldots, p \]
\[x \in \mathcal{T}^k \]

\[x^{k+1} \]

• \[\hat{f}(\hat{g}_i) \] is a convex approximation of \(f(g_i) \) over \(\mathcal{T}^k \)
• \(\hat{h} \) is an affine approximation of \(h \) over \(\mathcal{T}^k \)
The trust region

\[\mathcal{T}^k = \{ x \mid \|x - x^k\| \leq \rho \} \]

Ball \(\mathcal{T}^k = \{ x \mid \|x - x^k\|_2 \leq \rho \} \)

Box \(\mathcal{T}^k = \{ x \mid |x_i - x^k_i| \leq \rho_i \} \)

Note: if \(f, g_i, h_i \) are convex or affine in \(x_i \), then we can take \(\rho_i = \infty \)
Proximal operator interpretation

trust region problem

\[
\text{minimize} \quad f(x) \\
\text{subject to} \quad \|x - x^k\|_2 \leq \rho
\]

optimality conditions

\[
0 \in \partial f(x_{tr}) + \mu \frac{x_{tr} - x^k}{\|x_{tr} - x^k\|_2}, \quad \|x_{tr} - x^k\|_2 = \rho
\]

Note: write Lagrangian and use \(\partial \|x - v\|_2 = \frac{x - v}{\|x - v\|_2} \)

proximal problem

\[
\text{minimize} \quad f(x) + \frac{1}{2\lambda} \|x - x^k\|_2^2
\]

optimality conditions

\[
0 \in \partial f(x_{pr}) + \frac{1}{\lambda} (x_{pr} - x^k)
\]

\[\lambda = \frac{\rho}{\mu} \]
Building convex approximations
Convex Taylor expansions

Given nonconvex function f

First order

$$\hat{f}(x) = f(x^k) + \nabla f(x^k)^T (x - x^k)$$

Second order

$$\hat{f}(x) = f(x^k) + \nabla f(x^k)^T (x - x^k) + \left(\frac{1}{2}\right)(x - x^k)^T P_+(x - x^k)$$

where $P_+ = \Pi_{S_+}(\nabla^2 f(x)) = U (\text{diag}(\lambda))_+ U^T$

- positive semidefinite cone projection

Local approximation

it does not depend on trust-region radius ρ
Quasi-linearization

Very easy and cheap method for affine approximation

\[h(x) = A(x)x + b(x) \]

use \(\hat{h}(x) = A(x^k)x - b(x^k) \)

Example

\[f(x) = (1/2)x^T Px + q^T x = ((1/2)Px + q)^T x + r \]

Quasi-linear: \(\hat{x} = ((1/2)Px^k + q)^T x + r \)

Taylor: \(\hat{x} = h(x^k) + (Px^k + q)^T (x - x^k) \)

Local approximation

it does not depend on trust-region radius \(\rho \)
Particle methods

Idea

- Choose points $z_1, \ldots, z_K \in \mathcal{T}_k$ (e.g., vertices, grid, random, ...)
- Evaluate function $y_i = f(z_i)$
- Fit data (z_i, y_i) with convex functions (convex optimization)

Advantages

- Nondifferentiable functions
- **regional models**: they depend on current x_k and radii ρ_i
Particle methods

Fit piecewise linear functions to data

Fitting problem

\[
\begin{align*}
\text{minimize} & \quad \sum_{i=1}^{K} (\hat{y}_i - y_i)^2 \\
\text{subject to} & \quad \hat{y}_j \geq \hat{y}_i + g_i^T (z_j - z_i), \quad i, j = 1, \ldots, K \\
& \quad \hat{y}_i \leq y_i, \quad i = 1, \ldots, K \\
\end{align*}
\]

\[\hat{f}(x) = \max_i \{\hat{y}_i + g_i^T (x - z_i)\}\]

\(\hat{y}_i\) act as function values \(\hat{f}(z_i)\)

\(g_i\) act as subgradients \(\partial \hat{f}(z_i)\)

\(\text{convexity}\)

\(\text{lower bound}\)

\[f(x) = x^4 - 2x^3 + 0.3x\]
Particle methods

Fit quadratic functions to data

\[
\hat{f}(x) = (1/2)(x - x^k)^T P(x - x^k) + q^T (x - x^k) + r
\]

Fitting problem

\[
\text{minimize} \quad \sum_{i=1}^{K} \left(\frac{1}{2}(z_i - x^k)^T P(z_i - x^k) + q^T (z_i - z^k) + r - y_i \right)^2
\]

subject to \quad P \succeq 0

Remarks

• No necessarily upper/lower bound
• We can add other objectives, convex constraints and norm penalties
• Can be more sample efficient than piecewise linear
• Need to solve a convex problem for every function at every SCP iteration
Trust region example
Example: nonconvex quadratic program

\[
\begin{align*}
\text{minimize} & \quad f(x) = (1/2)x^T P x + q^T x \\
\text{subject to} & \quad \|x\|_\infty \leq 1
\end{align*}
\]

\(P\) is symmetric but not positive semidefinite

Taylor approximation

\[
\hat{f}(x) = f(x^k) + (P x^k + q)^T (x - x^k) + (1/2)(x - x^k)^T P_+(x - x^k)
\]
Example: nonconvex quadratic program

Lower bound via convex duality

minimize \[f(x) = (1/2)x^T Px + q^T x \]
subject to \[\|x\|_\infty \leq 1 \]

Lagrangian

\[L(x, \lambda) = (1/2)x^T Px + q^T x + \sum_{i=1}^{n} \lambda_i (x_i^2 - 1) \]
\[= (1/2)x^T (P + 2\text{diag}(\lambda))x + q^T x - 1^T \lambda \]

Dual problem (always convex)

minimize \[-(1/2)q^T (P + 2\text{diag}(\lambda))^{-1} q - 1^T \lambda \]
subject to \[P + 2\text{diag}(\lambda) \succ 0 \]
\[\lambda \geq 0 \]
Example: nonconvex quadratic program

SCP with $\rho = 0.2$ with 10 different random $x_0 \in \mathbb{R}^n$

$f(x^k)$

gap

lower bound ≈ -66.5
Regularized trust region methods
Issues with vanilla sequential convex programming

\[
\begin{align*}
\text{minimize} & \quad f(x) \\
\text{subject to} & \quad g_i(x) \leq 0, \quad i = 1, \ldots, m \\
& \quad h_i(x) = 0, \quad i = 1, \ldots, p
\end{align*}
\]

\[
\begin{align*}
\text{minimize} & \quad \hat{f}(x) \\
\text{subject to} & \quad \hat{g}_i(x) \leq 0, \quad i = 1, \ldots, m \\
& \quad \hat{h}_i(x) = 0, \quad i = 1, \ldots, p \\
& \quad x \in T^k
\end{align*}
\]

Infeasibility
Approximate problem can be infeasible (e.g. too small \(\rho \))

Evaluate progress when \(x^k \) infeasible

- Objective: \(f(x^k) \)
- Inequality violations: \(g_i(x^k) \)
- Equality violations: \(|h_i(x^k)| \)

Controlling trust region size

- \(\rho \) too large
 poor approximations \(\rightarrow \) bad \(x^{k+1} \)
- \(\rho \) too small
 good approximations \(\rightarrow \) slow progress
Exact penalty formulation

Solve unconstrained problem instead of the original problem

\[
\text{minimize} \quad \phi(x) = f(x) + \lambda \left(\sum_{i=1}^{m} (g_i(x))_+ + \sum_{i=1}^{p} |h_i(x)| \right), \quad \lambda > 0
\]

For \(\lambda \) large enough \(\longrightarrow \) \(x^* = \text{argmin} \phi(x) \) solves the original problem

(\(\lambda > \| y^* \|_\infty \) where \(y^* \) is the dual variable satisfying the KKT conditions)

SCP solves the convex approximation (always feasible)

\[
\hat{\phi}(x) = \hat{f}(x) + \lambda \left(\sum_{i=1}^{m} (\hat{g}_i(x))_+ + \sum_{i=1}^{p} |\hat{h}_i(x)| \right)
\]

If \(\lambda \) not large enough, we have \textbf{sparse violations}
Trust region update

Idea judge progress in ϕ using $\hat{x} = \text{argmin} \hat{\phi}(x)$

Exact decrease

$$\delta = \phi(x^k) - \phi(\hat{x})$$

Approximate decrease

$$\hat{\delta} = \phi(x^k) - \hat{\phi}(\hat{x})$$

Updates

- $\delta \geq \alpha \hat{\delta}$
 - accept: $x^{k+1} = \hat{x}$
 - increase region $\rho = \beta^{\text{acc}} \rho$
- $\delta < \alpha \hat{\delta}$
 - reject: $x^{k+1} = x^k$
 - decrease region $\rho = \beta^{\text{rej}} \rho$

Parameters

- tolerance α (e.g., $= 0.1$)
- accept multiplier $\beta^{\text{acc}} \geq 1$ (e.g., $= 1.1$)
- reject multiplier $\beta^{\text{rej}} \in (0, 1)$ (e.g., 0.5)

Interpretation

If actual decrease δ is more than α fraction of predicted decrease $\hat{\delta}$ then increase trust region size (longer steps). Otherwise decrease it.
Regularized trust region example
Nonlinear optimal control

Robotic arm

2-dimensional system

no gravity (horizontal)

controlled torques τ_1, τ_2
Nonlinear optimal control

The problem

minimize

\[J = \int_0^T \| \tau(t) \|^2 \, dt \]

subject to

\[\theta(0) = \theta_{\text{init}}, \quad \theta(T) = \theta_{\text{final}} \]

\[\dot{\theta}(0) = 0, \quad \dot{\theta}(T) = 0 \]

\[\| \tau(t) \|_{\infty} \leq \tau_{\text{max}}, \quad 0 \leq t \leq T \]

Dynamics

\[M(\theta) \ddot{\theta} + W(\theta, \dot{\theta}) \dot{\theta} = \tau \]

Not convex!
(Hard to optimize)

Note: cheap to simulate

\[M(\theta) = \begin{bmatrix} (m_1 + m_2)l_1^2 & m_2l_1l_2(s_1s_2 + c_1c_2) \\ m_2l_1l_2(s_1s_2 + c_1c_2) & m_2l_2^2 \end{bmatrix} \]

\[W(\theta, \dot{\theta}) = \begin{bmatrix} 0 & m_2l_1l_2(s_1c_2 - c_1s_2) \dot{\theta}_2 \\ m_2l_1l_2(s_1c_2 - c_1s_2) \dot{\theta}_1 & 0 \end{bmatrix} \]

where \(s_i = \sin(\theta_i) \) and \(c_i = \cos(\theta_i) \)
Nonlinear optimal control

Discretization

Objective

\[J = \int_0^T \| \tau(t) \|^2 dt \approx h \sum_{i=1}^{N} \| \tau_i \|^2, \quad \text{with} \quad \tau_i = \tau(ih) \]

Dynamics: approximate derivatives

\[M(\theta) \ddot{\theta} + W(\theta, \dot{\theta}) \dot{\theta} = \tau \]

\[\dot{\theta}(ih) \approx \frac{\theta_{i+1} - \theta_{i-1}}{2h} \]

\[\ddot{\theta}(ih) \approx \frac{\theta_{i+1} - 2\theta_i + \theta_{i-1}}{h^2} \]

nonlinear equality constraints

\[M(\theta_i) \frac{\theta_{i+1} - 2\theta_i + \theta_{i-1}}{h^2} + W \left(\theta_i, \frac{\theta_{i+1} - \theta_{i-1}}{2h} \right) \frac{\theta_{i+1} - \theta_{i-1}}{2h} = \tau_i \]
Nonlinear optimal control

Convexification

minimize \[h \sum_{i=1}^{N} \| \tau_i \|_2^2 \]

subject to
\[\theta_0 = \theta_1 = \theta_{\text{init}}, \quad \theta_N = \theta_{N+1} = \theta_{\text{final}} \]
\[\| \tau_i \|_{\infty} \leq \tau_{\text{max}} \]
\[M(\theta_i) \frac{\theta_{i+1} - 2\theta_i + \theta_{i-1}}{h^2} + W \left(\theta_i, \frac{\theta_{i+1} - \theta_{i-1}}{2h} \right) \frac{\theta_{i+1} - \theta_{i-1}}{2h} = \tau_i \]

Quasi-linearization of the dynamics around previous \(x^k \)

\[M(\theta^k_i) \frac{\theta_{i+1}^k - 2\theta_i^k + \theta_{i-1}^k}{h^2} + W \left(\theta^k_i, \frac{\theta^k_{i+1} - \theta^k_{i-1}}{2h} \right) \frac{\theta_{i+1}^k - \theta_{i-1}^k}{2h} = \tau_i \]

Remarks

• trust region only on \(\theta_i \) (cost and constraints convex in \(\tau_i \))
• initialize with straight line: \(\theta_i = \frac{i-1}{N-1} (\theta_{\text{final}} - \theta_{\text{init}}), \quad i = 1, \ldots, N \)
Nonlinear optimal control

Example

System
- $m_1 = 1$, $m_2 = 5$, $l_1 = l_2 = 1$
- $N = 40$, $T = 10$
- $\theta_{\text{init}} = (0, -2.9)$, $\theta_{\text{final}} = (3, 2.9)$
- $\tau_{\text{max}} = 1.1$

Algorithm
- $\lambda = 2$
- $\alpha = 0.1$, $\beta^{\text{acc}} = 1.1$, $\beta^{\text{rej}} = 0.5$
- $\rho_1 = 90^\circ$ (very large)

Note: does not go to 0
Nonlinear optimal control

Becomes feasible

not feasible

J

objective

fine tuning

$\hat{\delta}$: (dashed)
δ: (solid)

decrease in ϕ

torque residuals

Discretization error

trust region size

ρ^k
Nonlinear optimal control

Trajectories

\[
\tau_1(t) \quad \theta_1(t)
\]

\[
\tau_2(t) \quad \theta_2(t)
\]
Difference of convex programming
Difference of convex programming

\[
\begin{align*}
\text{minimize} & \quad f_0(x) - g_0(x) \\
\text{subject to} & \quad f_i(x) - g_i(x) \leq 0, \quad i = 1, \ldots, m
\end{align*}
\]

where \(f_i \) and \(g_i \) are convex

Very powerful

it can represent any twice differentiable function

Hard

nonconvex problem unless \(g_i \) are affine

[On Functions Representable As A Difference Of Convex Functions, Hartman]
Difference of convex programming

Convexification

Convexify \(f(x) - g(x) \)

\[
f(x) - \hat{g}(x) = f(x) - g(x^k) - \nabla g(x^k)^T (x - x^k)
\]

\[
f(x) - g(x) \leq f(x) - \hat{g}(x)
\]

Remarks

- True objective better than convexified objective
- True feasible set contains convexified feasible set

No trust region needed
Difference of convex programming

Iterations

Convex-concave procedure

1. Convexify: form \(\hat{g}_i(x) = g_i(x^k) + \nabla g_i(x^k)^T (x - x^k) \) for \(i = 0, \ldots, m \)

2. Solve to obtain \(x^{k+1} \)

 minimize \(f_0(x) - \hat{g}_0(x) \)
 subject to \(f_i(x) - \hat{g}_i(x) \leq 0 \)

Remarks

It always converges to a stationary point (it might be a maximum)

[Variations and extension of the convex–concave procedure, Lipp, Boyd]
Path planning example

Find shortest path connecting a and b in \mathbb{R}^d

Avoid circles centered at c_j with radius r_j with $j = 1, \ldots, m$

\[
\text{minimize} \quad L \\
\text{subject to} \quad x_0 = a, \quad x_n = b \\
\text{path lengths} \quad \|x_i - x_{i-1}\|_2 \leq L/n, \quad i = 1, \ldots, n \\
\text{obstacle constraints} \quad \|x_i - c_j\|_2 \geq r_j, \quad i = 1, \ldots, n, \quad j = 1, \ldots, m
\]
Path planning example

minimize \[L \]
subject to \[x_0 = a, \quad x_n = b \]
\[\|x_i - x_{i-1}\|_2 \leq L/n, \quad i = 1, \ldots, n \]
\[\|x_i - c_j\|_2 \geq r_j, \quad i = 1, \ldots, n, \quad j = 1, \ldots, m \]

Dimension: \[d = 2 \]
Steps: \[n = 50 \]

It converges in 26 iterations (convex problems)

[Disciplined Convex-Concave Programming, Shen, Diamond, Gu, Boyd]
Sequential convex programming

Today, we learned to:

• **Familiarize** with concepts of sequential convex programming

• **Develop** trust region algorithms

• **Build** convex approximations of nonlinear/nonsmooth functions

• **Develop** regularized trust region methods to account for infeasibility

• **Recognize** difference-of-convex programs and **apply** convex-concave procedure
Next lecture

• Branch and bound algorithms