ORF522 – Linear and Nonlinear Optimization

12. Introduction to nonlinear optimization
Homogeneous self-dual embedding
Optimality conditions

Primal

- **minimize**: $c^T x$
- **subject to**: $Ax + s = b$
 - $s \geq 0$

Dual

- **maximize**: $-b^T y$
- **subject to**: $A^T y + c = 0$
 - $y \geq 0$

Optimality conditions

$$
\begin{bmatrix}
0 \\
s \\
0
\end{bmatrix} =
\begin{bmatrix}
0 & A^T \\
-A & 0 \\
c^T & b^T
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix} +
\begin{bmatrix}
c \\
b \\
0
\end{bmatrix}
$$

$s, y \geq 0$

Any (x^*, s^*, y^*) satisfying these conditions is **optimal**

What happens if the problem is infeasible?
How do you detect infeasibility/unboundedness?

<table>
<thead>
<tr>
<th>Primal</th>
<th>Dual</th>
</tr>
</thead>
<tbody>
<tr>
<td>minimize $c^T x$</td>
<td>maximize $-b^T y$</td>
</tr>
<tr>
<td>subject to $Ax + s = b$</td>
<td>subject to $A^T y + c = 0$</td>
</tr>
<tr>
<td>$s \geq 0$</td>
<td>$y \geq 0$</td>
</tr>
</tbody>
</table>

Alternatives (Farkas lemma) Write feasibility problem and dualize…

- **primal feasible:** $Ax + s = b$, $s \geq 0$
- **primal infeasible:** $A^T y = 0$, $b^T y < 0$, $y \geq 0$ (primal infeasibility certificate)
- **dual feasible:** $A^T y + c = 0$, $y \geq 0$
- **dual infeasible:** $Ax \leq 0$, $c^T x < 0$ (dual infeasibility certificate)
The homogeneous self-dual embedding

Derivation

Introduce two new variables $\kappa, \tau \geq 0$

Homogeneous self-dual embedding

\[
\begin{bmatrix}
 0 \\
 s \\
 \kappa
\end{bmatrix} =
\begin{bmatrix}
 0 & A^T & c \\
 -A & 0 & b \\
 -c^T & -b^T & 0
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 \tau
\end{bmatrix}
\]

$s, y, \kappa, \tau \geq 0$

\[
Q =
\begin{bmatrix}
 0 & A^T & c \\
 -A & 0 & b \\
 -c^T & -b^T & 0
\end{bmatrix}
\]

\[
Qu = v
\]

\[
u, v \geq 0
\]

$u = (x, y, \tau)$

$v = (0, s, \kappa)$
The homogeneous self-dual embedding

Properties

\[Qu = v \]
\[u, v \geq 0 \]

\[
Q = \begin{bmatrix}
0 & A^T & c \\
-A & 0 & b \\
-c^T & -b^T & 0
\end{bmatrix}
\]

\[u = (x, y, \tau) \]
\[v = (0, s, \kappa) \]

Matrix

- \(Q \) is skew-symmetric: \(Q^T = -Q \) \(\Rightarrow \) \(u^T Qu = 0 \)
- \(u \perp v \) \hspace{1em} \text{proof} \hspace{1em} Qu - v = 0 \hspace{1em} \Rightarrow \hspace{1em} u^T Qu - u^T v = 0 \hspace{1em} \Rightarrow \hspace{1em} u^T v = 0 \]

Homogeneous

\((u, v)\) satisfy \(Qu = v, (v, u) \geq 0 \) \(\Rightarrow \hspace{1em} \alpha(u, v) \) with \(\alpha \geq 0 \) feasible

Always feasible

\(\alpha = 0 \) \(\Rightarrow \hspace{1em} (0, 0) \) is feasible
The homogeneous self-dual embedding

Outcomes

Find x, s, y, κ, τ such that

$$
\begin{bmatrix}
0 \\
-\kappa \\
-\tau
\end{bmatrix} =
\begin{bmatrix}
0 & A^T & c \\
-A & 0 & b \\
-c^T & -b^T & 0
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
\tau
\end{bmatrix}
$$

$s, y, \kappa, \tau \geq 0$

Note. By strict complementarity, we can ensure $\kappa + \tau > 0$

Case 1: feasibility

$\tau > 0, \kappa = 0$ define $(\hat{x}, \hat{s}, \hat{y}) = (x^*/\tau, s^*/\tau, y^*/\tau)$

$$
0 = A^T \hat{y} + c \\
\hat{s} = -A\hat{x} + b
$$

$\hat{s} \geq 0, \quad \hat{y} \geq 0, \quad \hat{s}^T \hat{y} = 0$

\longrightarrow $(\hat{x}, \hat{s}, \hat{y})$ is a **solution** to the original problem
The homogeneous self-dual embedding

Outcomes

Find x, s, y, κ, τ such that

$$
\begin{bmatrix}
0 \\
s \\
\kappa
\end{bmatrix} =
\begin{bmatrix}
A^T & c \\
-A & 0 & b \\
-c^T & -b^T & 0
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
\tau
\end{bmatrix}
$$

$s, y, \kappa, \tau \geq 0$

Case 2: infeasibility

$\tau = 0, \kappa > 0 \quad \rightarrow \quad c^T x + b^T y < 0$ (impossible). Must have infeasibility

If $b^T y < 0$ then $\hat{y} = y / (-b^T y)$ is a certificate of primal infeasibility

$$
A^T \hat{y} = 0, \quad b^T \hat{y} = -1 < 0, \quad \hat{y} \geq 0
$$

If $c^T x < 0$ then $\hat{x} = x / (-c^T x)$ is a certificate of dual infeasibility

$$
A\hat{x} \leq 0, \quad c^T \hat{x} = -1 < 0
$$
Interior-point method for homogeneous self-dual embedding

Linear complementarity problem

\[Qu = v \]
\[u^T v = 0 \]
\[u, v \geq 0 \]

Equations

\[h(u, v) = \begin{bmatrix} Qu - v \\ UV1 \end{bmatrix} = 0 \]
\[u, v \geq 0 \]

Directions

\[
\begin{bmatrix} Q & -I \\ V & U \end{bmatrix}
\begin{bmatrix} \Delta u \\ \Delta v \end{bmatrix} =
\begin{bmatrix} -r_e \\ -UV1 + \sigma \mu 1 \end{bmatrix}
\]
\[r_e = Qu - v \]
\[\mu = (u^T v) / d \]

Line search to enforce \(u, v > 0 \)

\[(u, v) \leftarrow (u, v) + \alpha (\Delta u, \Delta v) \]

Interior-point methods can solve linear complementarity problems
Today’s lecture
[Chapter 2-4 and 6, CO] [Chapter A and B, FCA]

- Nonlinear optimization
- Examples
- Convex analysis review
- Convex optimization
What if the problem is no longer linear?
Nonlinear optimization

minimize \(f(x) \)
subject to \(g_i(x) \leq 0, \quad i = 1, \ldots, m \)

\(x = (x_1, \ldots, x_n) \) Variables
\(f : \mathbb{R}^n \rightarrow \mathbb{R} \) Nonlinear objective function
\(g_i : \mathbb{R}^n \rightarrow \mathbb{R} \) Nonlinear constraints functions

Feasible set
\[
C = \{ x \mid g_i(x) \leq 0, \quad i = 1, \ldots, m \}
\]
Small example

minimize \[0.5x_1^2 + 0.25x_2^2 \]
subject to
\[e^{x_1} - 2 - x_2 \leq 0 \]
\[(x_1 - 1)^2 + x_2 - 3 \leq 0 \]
\[x_1 \geq 0 \]
\[x_2 \geq 1 \]

Contour plot has curves
(no longer lines)

Feasible set is
no longer a polyhedron
Integer optimization
It’s still nonlinear optimization

minimize \(f(x) \)
subject to \(x \in \mathbb{Z} \)

minimize \(f(x) \)
subject to \(\sin(\pi x) = 0 \)
We cannot solve most nonlinear optimization problems
Examples of (solvable) nonlinear optimization
Regression

Fit affine function $f(z) = \alpha + \beta z$ to m points (z_i, y_i)

Approximation problem $Ax \approx b$ where

$$A = \begin{bmatrix} 1 & z_1 \\ \vdots & \vdots \\ 1 & z_m \end{bmatrix}, \quad x = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}, \quad b = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix}$$

Goal

minimize $\|Ax - b\|$

1-norm or ∞-norm \implies linear optimization

2-norm \implies least-squares

$$\|Ax - b\|_2^2 = \sum_i (f(z_i) - y_i)^2$$
Sparse regression

Regressor selection

\[
\begin{align*}
\text{minimize} & \quad \|Ax - b\|_2^2 \\
\text{subject to} & \quad \text{card}(x) \leq k \\
\end{align*}
\]

(very hard)

Add regularization to the objective

Regularized regression (ridge)

\[
\text{minimize} \quad \|Ax - b\|_2^2 + \gamma\|x\|_2^2
\]

Regularized regression (lasso)

\[
\text{minimize} \quad \|Ax - b\|_2^2 + \gamma\|x\|_1
\]

Sparse x is more robust and interpretable
Lasso vs ridge regression

Regularized regression (ridge)

\[
\text{minimize } \|Ax - b\|_2^2 + \gamma \|x\|_2^2
\]

Regularized regression (lasso)

\[
\text{minimize } \|Ax - b\|_2^2 + \gamma \|x\|_1
\]

Regularization paths
Portfolio optimization

We have a total of n assets

x_i is fraction of money invested in asset i

p_i is the relative price change of asset i

Returns

$p^T x$

p random variable: mean μ, covariance Σ

Portfolio optimization

Expected return

maximize $\mu^T x - \gamma x^T \Sigma x$

subject to $1^T x = 1$

$x \geq 0$

Risk

Risk-aversion parameter
Convex analysis review
Extended real-value functions

\[f(x) \text{ on } \text{dom} f \]

Extended-value extension

\[\tilde{f}(x) = \begin{cases}
 f(x) & x \in \text{dom} f \\
 \infty & x \notin \text{dom} f
\end{cases} \]

Always possible to evaluate functions

\[\text{dom} \tilde{f} = \{ x \mid \tilde{f}(x) < \infty \} \]
Indicator functions

Indicator function

\[I_C(x) = \begin{cases}
0 & x \in C \\
\infty & x \notin C
\end{cases} \]

Constrained form
minimize \(f(x) \)
subject to \(x \in C \)

Unconstrained form
minimize \(f(x) + I_C(x) \)
Convex set

Definition

For any $x, y \in C$ and any $\alpha \in [0, 1]$,

$$\alpha x + (1 - \alpha)y \in C$$

Examples

- \mathbb{R}^n
- Hyperplanes
- Hyperspheres
- Polyhedra

Examples

- Cardinality constraint $\text{card}(x) \leq k$
- \mathbb{Z}^n
- Any disjoint set
Convex combinations

Convex combination

\[\alpha_1 x_1 + \cdots + \alpha_k x_k \] for any \(x_1, \ldots, x_k \) and \(\alpha_1, \ldots, \alpha_k \) such that \(\alpha_i \geq 0, \sum_{i=1}^{k} \alpha_i = 1 \)

Convex hull

\[\text{conv } C = \left\{ \sum_{i=1}^{k} \alpha_i x_i \mid x_i \in C, \quad \alpha_i \geq 0, \quad i = 1, \ldots, k, \quad 1^T \alpha = 1 \right\} \]
Cones

Cone
\[x \in C \implies tx \in C \quad \text{for all} \quad t \geq 0 \]

Convex cone
\[x_1, x_2 \in C \implies t_1 x_1 + t_2 x_2 \in C \quad \text{for all} \quad t_1, t_2 \geq 0 \]
Conic combinations

Conic combination
\[\alpha_1 x_1 + \cdots + \alpha_k x_k \] for any \(x_1, \ldots, x_k \) and \(\alpha_1, \ldots, \alpha_k \) such that \(\alpha_i \geq 0 \)

Conic hull
\[\left\{ \sum_{i=1}^{k} \alpha_i x_i \mid x_i \in C, \quad \alpha_i \geq 0, \quad i = 1, \ldots, k \right\} \]
Cones

Examples

Nonnegative orthant
\[\mathbb{R}_+^n = \{ x \in \mathbb{R}^n \mid x \geq 0 \} \]

Norm-cone
\[\{ (x, t) \mid \|x\| \leq t \} \] (if 2-norm, second-order cone)

Positive semidefinite cone
\[\mathcal{S}_+^n = \{ X \in \mathcal{S}^n \mid z^T X z \geq 0, \text{ for all } z \in \mathbb{R}^n \} \]
Normal cone

For any set C and point $x \in C$, we define

$$\mathcal{N}_C(x) = \left\{ g \mid g^T(y - x) \leq 0, \text{ for all } y \in C \right\}$$

$\mathcal{N}_C(x)$ is always convex

What if $x \in \text{int} S$?
Gradient

Derivative
If \(f(x) : \mathbb{R}^n \rightarrow \mathbb{R}^m \) continuously differentiable, we define

\[
Df(x)_{ij} = \frac{\partial f_i(x)}{\partial x_j}, \quad i = 1, \ldots, m, \quad j = 1, \ldots, n
\]

Gradient
If \(f : \mathbb{R}^n \rightarrow \mathbb{R} \), we define

\[
\nabla f(x) = Df(x)^T
\]

Example
\[
f(x) = (1/2)x^T P x + q^T x
\]
\[
\nabla f(x) = Px + q
\]

First-order approximation
\[
f(y) \approx f(x) + \nabla f(x)^T (y - x)
\]
(affine function of \(y \))
Hessian

Hessian matrix (second derivative)

If \(f(x) : \mathbb{R}^n \rightarrow \mathbb{R} \) second-order differentiable, we define

\[
\nabla^2 f(x)_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}, \quad i, j = 1, \ldots, n
\]

Example

\[
f(x) = (1/2)x^T Px + q^T x
\]

\[
\nabla^2 f(x) = P
\]

Second-order approximation

\[
f(y) \approx f(x) + \nabla f(x)^T (y - x) + (1/2)(y - x)^T \nabla^2 f(x)(y - x)
\]

(quadratic function of \(y \))
Convex optimization
Convex functions

Convex function
For every $x, y \in \mathbb{R}^n$, $\alpha \in [0, 1]$ \[f(\alpha x + (1 - \alpha)y) \leq \alpha f(x) + (1 - \alpha)f(y) \]

Concave function
f is concave if and only if $-f$ is convex
Convex conditions

First-order
Let f be a continuous differentiable function, then it is convex if and only if $\text{dom } f$ is convex and

$$f(y) \geq f(x) + \nabla f(x)^T(y - x)$$

for all $x, y \in \text{dom } f$

Second-order
If f is twice differentiable, then f is convex if and only if $\text{dom } f$ is convex and

$$\nabla^2 f(x) \succeq 0$$

for all $x \in \text{dom } f$
Verifying convexity

Basic definition (inequality)

First and second order conditions (gradient, hessian) → Hard!

Convex calculus (directly construct convex functions)

- Library of basic functions that are convex/concave
- Calculus rules or transformations that preserve convexity → Easy!
Disciplined Convex Programming
Convexity by construction

General composition rule

\[h(f_1(x), f_2(x), \ldots, f_k(x)) \] is convex when \(h \) is convex and for each \(i \)

- \(h \) is nondecreasing in argument \(i \) and \(f_i \) is convex, or
- \(h \) is nonincreasing in argument \(i \) and \(f_i \) is concave, or
- \(f_i \) is affine

Check your functions at https://dcp.stanford.edu/
More details and examples in ORF523
Convex optimization problems

minimize \(f(x) \)
subject to \(g_i(x) \leq 0, \quad i = 1, \ldots, m \)

\(f : \mathbb{R}^n \rightarrow \mathbb{R} \) Convex objective function
\(g_i : \mathbb{R}^n \rightarrow \mathbb{R} \) Convex constraints functions

Convex feasible set
\[C = \{ x \mid g_i(x) \leq 0, \quad i = 1, \ldots, m \} \]
Modelling software for convex optimization

Modelling tools simplify the formulation of convex optimization problems

- **Construct problems** using library of basic functions
- **Verify convexity** by general composition rule
- Express the problem in input format required by a specific solver

Examples

- CVX, YALMIP (Matlab)
- CVXPY (Python)
- Convex.jl (Julia)
Solving convex optimization problems

CVXPY

minimize $\|Ax - b\|_2$
subject to $0 \leq x \leq 1$

```python
x = cp.Variable(n)
objective = cp.Minimize(cp.norm(A*x - b))
constraints = [0 <= x, x <= 1]
problem = cp.Problem(objective, constraints)

# The optimal objective value is returned by `problem.solve()`.
result = problem.solve()

# The optimal value for x is stored in `x.value`
print(x.value)
```
Local vs global minima (optimizers)

\[
\text{minimize } f(x) \\
\text{subject to } x \in C
\]

Local optimizer \(x \)
\[
f(y) \geq f(x), \quad \forall y \text{ such that } \|x - y\|_2 \leq R
\]

Global optimizer \(x \)
\[
f(y) \geq f(x), \quad \forall y \in C
\]
Optimality and convexity

Theorem

For a convex optimization problem, any local minimum is a global minimum.

Local optimizer x

$$f(y) \geq f(x), \quad \forall y$$

such that $\|x - y\|_2 \leq R$

Global optimizer x

$$f(y) \geq f(x), \quad \forall y \in C$$
Optimality and convexity

Proof (contradiction)

Suppose that f is convex and x is a local (not global) minimum for f, i.e.,

$$f(y) \geq f(x), \quad \forall y \text{ such that } \|x - y\|_2 \leq R.$$

Therefore, there exists a feasible z such that $\|z - x\| > R$ and $f(z) < f(x)$.

Consider $y = (1 - \alpha)x + \alpha z$ with $\alpha = \frac{R}{2\|z - x\|_2}$.

Then, $\|y - x\|_2 = \alpha\|z - x\|_2 = \frac{R}{2} < R$, and by convexity of the feasible set, y is feasible.

By convexity of f we have $f(y) \leq (1 - \alpha)f(x) + \alpha f(z) < f(x)$, which contradicts the local optimum definition.

Therefore, x is globally optimal.
"...in fact, the great watershed in optimization isn't between linearity and nonlinearity, but convexity and nonconvexity."

Nonlinear optimization
Topics of this part of the course

Conditions to characterize minima

Algorithms to find (local) minima

(if applied to **convex problems**, they find **global minima**)
Introduction to nonlinear optimization

Today, we learned to:

• **Define** nonlinear optimization problems

• **Understand** convex analysis fundamentals (sets, cones, functions, and gradients)

• **Verify** convexity and **construct** convex optimization problems

• **Define** convex optimization problems in CVXPY

• **Understand** the importance of *convexity vs nonconvexity* in optimization
Next lecture

- Optimality conditions in nonlinear optimization