ORF522 – Linear and Nonlinear Optimization

3. Geometry and polyhedra
Ed Forum

• General Forum
 • Please select the relevant Lecture in Notes/Question
 • Just need one question or comment. Not both

• Questions/Notes
 • Converting a problem in standard form increases the dimension of the problem, potentially by quite a lot. Is this ever an issue? Are there cases where we may want to not convert to standard form?
 • Why in general, machine learning people would love to use l2 norm in their loss function? Also, what's the intuition behind the fact that l2 norm cannot fully recover the sparse signal but l1 norm can?
Today’s agenda
Readings [Chapter 2, Bertsimas and Tsitsiklis]

• Polyhedra and linear algebra
• Corners: extreme points, vertices, basic feasible solutions
• Constructing basic solutions
• Existence and optimality of extreme points
Polyhedra and linear algebra
Hyperplanes and halfspaces
Definitions

Hyperplane
\[\{ x \mid a^T x = b \} \]

Halfspace
\[\{ x \mid a^T x \leq b \} \]

- \(x_0 \) is a specific point in the hyperplane
- For any \(x \) in the hyperplane defined by \(a^T x = b \), \(x - x_0 \perp a \)
- The halfspace determined by \(a^T x \leq b \) extends in the direction of \(-a\)
Polyhedron
Definition

\[P = \{ x \mid a_i^T x \leq b_i, \quad i = 1, \ldots, m \} = \{ x \mid Ax \leq b \} \]

- Intersection of finite number of halfspaces
- Can include equalities
Convex set

Definition

For any $x, y \in C$ and any $\alpha \in [0, 1]$

$$\alpha x + (1 - \alpha)y \in C$$

Examples

- \mathbb{R}^n
- Hyperplanes
- Halfspaces
- Polyhedra
Convex combinations

Convex combination

\[\alpha_1 x_1 + \cdots + \alpha_k x_k \] for any \(x_1, \ldots, x_k \) and \(\alpha_1, \ldots, \alpha_k \) such that \(\alpha_i \geq 0, \sum_{i=1}^{k} \alpha_i = 1 \)

Convex hull

\[\text{conv } C = \left\{ \sum_{i=1}^{k} \alpha_i x_i \mid x_i \in C, \alpha \geq 0, \ 1^T \alpha = 1 \right\} \]
Linear independence

A nonempty set of vectors \(\{v_1, \ldots, v_k\} \) is **linearly independent** if

\[
\alpha_1 v_1 + \cdots + \alpha_k v_k = 0
\]

holds only for \(\alpha_1 = \cdots = \alpha_k = 0 \)

Properties

- The coefficients \(\alpha_k \) in a linear combination \(x = \alpha_1 v_1 + \cdots + \alpha_k v_k \) are unique
- None of the vectors \(v_i \) is a linear combination of the other vectors
Geometrical interpretation of linear optimization

minimize \(c^T x \)

subject to \(Ax \leq b \)

Dashed lines (hyperplanes) are level sets \(c^T x = \alpha \) for different \(\alpha \)
Example of linear optimization

minimize \(-x_1 - x_2\)
subject to
\begin{align*}
2x_1 + x_2 &\leq 3 \\
x_1 + 4x_2 &\leq 5 \\
x_1 &\geq 0, \ x_2 &\geq 0
\end{align*}

Optimal solutions tend to be at a “corner” of the feasible set

How do we formalize it?
Corners of linear optimization
Extreme points

Definition

\(x \in P\) is said to be an **extreme point** of \(P\) if

\[\forall y, z \in P \ (y \neq x, z \neq x) \text{ and } \alpha \in [0, 1] \text{ such that } x = \alpha y + (1 - \alpha)z\]
Extreme points
Convex sets

• Convex sets can have an infinite number of extreme points
• Polyhedra are convex sets with a finite number of extreme points
Vertices

Definition

$x \in P$ is a **vertex** if $\exists c$ such that x is the unique optimum of

\[
\begin{align*}
\text{minimize} & \quad c^T y \\
\text{subject to} & \quad y \in P
\end{align*}
\]

\[
\{y \mid c^T y = c^T w\}
\]

\[
\begin{align*}
\{y \mid c^T y = c^T x\}
\end{align*}
\]
Basic feasible solution

\[P = \{ x \mid a_i^T x \leq b_i, \quad i = 1, \ldots, m \} \]

Active constraints at \(\bar{x} \)

\[\mathcal{I}(\bar{x}) = \{ i \in \{1, \ldots, m\} \mid a_i^T \bar{x} = b_i \} \]

Index of all the constraints satisfied as equality

Basic solution \(\bar{x} \)

- \(\{a_i \mid i \in \mathcal{I}(\bar{x})\} \) has \(n \) linearly independent vectors

Basic feasible solution \(\bar{x} \)

- \(\bar{x} \in P \)
- \(\{a_i \mid i \in \mathcal{I}(\bar{x})\} \) has \(n \) linearly independent vectors
Degenerate basic feasible solutions

A solution \bar{x} is degenerate if $|\mathcal{I}(\bar{x})| > n$

True or False?

<table>
<thead>
<tr>
<th></th>
<th>Basic</th>
<th>Feasible</th>
<th>Degenerate</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[Diagram of a feasible region P with points x, y, and z]
Equivalence

Theorem

Given a nonempty polyhedron $P = \{x \mid Ax \leq b\}$

Let $x \in P$

x is a vertex \iff x is an extreme point \iff x is a basic feasible solution
Equivalent theorem proof
Vertex \rightarrow Extreme point

If x is a vertex, $\exists c$ such that $c^T x < c^T y$, $\forall y \in P, y \neq x$

Let’s assume x is not an extreme point:

$\exists y, z \neq x$ such that $x = \lambda y + (1 - \lambda)z$

Since x is a vertex, $c^T x < c^T y$ and $c^T x < c^T z$

Therefore, $c^T x = \lambda c^T y + (1 - \lambda)c^T z > \lambda c^T x + (1 - \lambda)c^T x = c^T x$

\implies contradiction
Equivalent theorem proof
Extreme point \rightarrow Basic feasible solution
(proof by contraposition)

Suppose $x \in P$ is not basic feasible solution

$\{a_i \mid i \in \mathcal{I}(x)\}$ does not span \mathbb{R}^n

$\exists d \in \mathbb{R}^n$ perpendicular to all of them: $a_i^T d = 0, \quad \forall i \in \mathcal{I}(x)$
Equivalent theorem proof
Extreme point \rightarrow Basic feasible solution
(proof by contraposition)

Suppose $x \in P$ is not basic feasible solution

\[
\{a_i \mid i \in \mathcal{I}(x)\} \text{ does not span } \mathbb{R}^n \\
\exists d \in \mathbb{R}^n \text{ perpendicular to all of them: } a_i^T d = 0, \quad \forall i \in \mathcal{I}(x)
\]

Let $\epsilon > 0$ and define $y = x + \epsilon d$ and $z = x - \epsilon d$

For $i \in \mathcal{I}(x)$ we have $a_i^T y = b_i$ and $a_i^T z = b_i$

For $i \notin \mathcal{I}(x)$ we have $a_i^T x < b_i \quad \Rightarrow \quad a_i^T (x + \epsilon d) < b_i$ and $a_i^T (x - \epsilon d) < b_i$

Hence, $y, z \in P$ and $x = \lambda y + (1 - \lambda) z$ with $\lambda = 0.5$.

$\implies x$ is not an extreme point
Equivalent theorem proof
Extreme point \rightarrow Basic feasible solution (proof by contraposition)

Suppose $x \in P$ is not basic feasible solution

Hence, $y, z \in P$ and $x = \lambda y + (1 - \lambda)z$ with $\lambda = 0.5$.
$\implies x$ is not an extreme point
Equivalent theorem proof
Basic feasible solution \rightarrow Vertex

Left as exercise

Hint
Define $c = - \sum_{i \in \mathcal{I}(x)} a_i$
Constructing basic solutions
Standard form polyhedra

Definition

Standard form LP

\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad Ax = b \\
& \quad x \geq 0
\end{align*}
\]

Assumption

\(A \in \mathbb{R}^{m \times n} \) has full row rank \(m \leq n \)

Interpretation

\(P \) lives in \((n - m)\)-dimensional subspace

Standard form polyhedron

\[
P = \{ x \mid Ax = b, \ x \geq 0 \}
\]
Basic solutions
Standard form polyhedra

\[P = \{ x \mid Ax = b, \ x \geq 0 \} \]

with \(A \in \mathbb{R}^{m \times n} \) has full row rank \(m \leq n \)

\(x \) is a **basic solution** if and only if

- \(Ax = b \)
- There exist indices \(B(1), \ldots, B(m) \) such that
 - columns \(A_{B(1)}, \ldots, A_{B(m)} \) are linearly independent
 - \(x_i = 0 \) for \(i \neq B(1), \ldots, B(m) \)

\(x \) is a **basic feasible solution** if \(x \) is a **basic solution** and \(x \geq 0 \)
Constructing basic solution

1. Choose any m independent columns of A: $A_B(1), \ldots, A_B(m)$
2. Let $x_i = 0$ for all $i \neq B(1), \ldots, B(m)$
3. Solve $Ax = b$ for the remaining $x_B(1), \ldots, x_B(m)$

\[A_B = \begin{bmatrix} A_{B(1)} & A_{B(2)} & \cdots & A_{B(m)} \end{bmatrix}, \quad x_B = \begin{bmatrix} x_{B(1)} \\ \vdots \\ x_{B(m)} \end{bmatrix} \quad \rightarrow \quad \text{Solve } A_B x_B = b \]

If $x_B \geq 0$, then x is a basic feasible solution
Finding a basic solution

\[
\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
2 & -1 & -3 & 0 & 0 \\
0 & 2 & 8 & 1 & 2
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
x_5
\end{bmatrix}
=
\begin{bmatrix}
1 \\
-1 \\
6
\end{bmatrix}
\]

\[
x_B = \begin{bmatrix}
x_2 \\
x_4 \\
x_5
\end{bmatrix} = \begin{bmatrix}
1 \\
2 \\
1
\end{bmatrix} \geq 0
\]

Solve

\[
\begin{bmatrix}
0 & 0 & 1 \\
-1 & 0 & 0 \\
2 & 1 & 2
\end{bmatrix}
\begin{bmatrix}
x_2 \\
x_4 \\
x_5
\end{bmatrix} =
\begin{bmatrix}
1 \\
-1 \\
6
\end{bmatrix}
\]
Existence and optimality of extreme points
Existence of extreme points

Example

No extreme points

Extreme points
Existence of extreme points

Characterization

A polyhedron \(P \) contains a line if
\[
\exists x \in P \text{ and a nonzero vector } d \text{ such that } x + \lambda d \in P, \forall \lambda \in \mathbb{R}.
\]

Given a polyhedron \(P = \{ x \mid a_i^T x \leq b_i, \ i = 1, \ldots, m \} \), the following are equivalent

- \(P \) does not contain a line
- \(P \) has at least one extreme point
- \(n \) of the \(a_i \) vectors are linearly independent

Corollary
Every nonempty bounded polyhedron has at least one basic feasible solution
Optimality of extreme points

minimize $c^T x$
subject to $Ax \leq b$

If
• P has at least one extreme point
• There exists an optimal solution x^*

Then, there exists an optimal solution which is an extreme point of P

We only need to search between extreme points
How to search among basic feasible solutions?

Idea
List all the basic feasible solutions, compare objective values and pick the best one.

Intractable!
If \(n = 1000 \) and \(m = 100 \), we have \(10^{143} \) combinations!
Conceptual algorithm

- Start at corner
- Visit neighboring corner that improves the objective
Geometry of linear optimization

Today, we learned to:

• **Apply geometric and algebraic properties** of polyhedra to characterize the “corners” of the feasible region.

• **Construct basic feasible solutions** by solving a linear system.

• **Recognize existence and optimality** of extreme points.
Next lecture
The simplex method

- Iterations
- Convergence
- Complexity