ORF307 – Optimization

18. Interior-point methods II
Ed Forum

• 2nd Midterm: April 12
 Time: 1:30pm — 2:50pm
 Students with extensions will start earlier
 Location: Friend 006
 Topics: linear optimization
 Exercises to prepare: past midterm + extra exercises on canvas

• Questions

 • I thought that Newton's method looked very similar to Gradient Descent. I was wondering how close of an optimizing method they are, or if they are just simply the same method with different names.

 • how does one choose a "good" sigma between 0 and 1 to stay near the central path while also eventually reaching optimality?
\[h(x) = 0 \quad \iff \quad \nabla f(x) = 0 \quad \min f(x) \]
Recap
(Sparse) Cholesky factorization

Every positive definite matrix A can be factored as

$$A = \mathcal{P} L L^T \mathcal{P}^T \quad \rightarrow \quad P^T A P = L L^T$$

\mathcal{P} permutation, L lower triangular
(Sparse) Cholesky factorization

Every positive definite matrix A can be factored as

$$ A = PLL^T P^T \quad \rightarrow \quad P^T AP = LL^T $$

P permutation, L lower triangular

Permutations

- Reorder rows/cols of A with P to (heuristically) get **sparser** L
- P depends only on sparsity pattern of A (unlike LU factorization)
- If A is dense, we can set $P = I$
(Sparse) Cholesky factorization

Every positive definite matrix A can be factored as

$$A = PLL^T P^T \quad \rightarrow \quad P^T AP = LL^T$$

P permutation, L lower triangular

Permutations

- Reorder rows/cols of A with P to (heuristically) get sparser L
- P depends only on sparsity pattern of A (unlike LU factorization)
- If A is dense, we can set $P = I$

Cost

- If A dense, typically $O(n^3)$ but usually much less
- It depends on the number of nonzeros in A, sparsity pattern, etc.
- Typically 50% faster than LU (need to find only one matrix)
Linear optimization as a root finding problem

Optimality conditions

minimize \(c^T x \)
subject to \(Ax \leq b \)
Linear optimization as a root finding problem

Optimality conditions

Primal

minimize \(c^T x \)
subject to \(Ax \leq b \)

Dual

maximize \(-b^T y \)
subject to \(A^T y + c = 0 \)

\(y \geq 0 \)
Linear optimization as a root finding problem

Optimality conditions

Primal

\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad Ax \leq b
\end{align*}
\]

Dual

\[
\begin{align*}
\text{maximize} & \quad -b^T y \\
\text{subject to} & \quad A^T y + c = 0
\end{align*}
\]

KKT conditions

\[
\begin{align*}
Ax + s - b &= 0 \\
A^T y + c &= 0 \\
s_i y_i &= 0, \quad i = 1, \ldots, m \\
s, y &\geq 0
\end{align*}
\]
Linear optimization as a root finding problem

\[Ax + s - b = 0 \]
\[A^T y + c = 0 \]
\[s_i y_i = 0, \quad i = 1, \ldots, m \]
\[s, y \geq 0 \]
Linear optimization as a root finding problem

\[Ax + s - b = 0 \]
\[A^T y + c = 0 \]
\[s_i y_i = 0, \quad i = 1, \ldots, m \]
\[s, y \geq 0 \]

Diagonalize complementary slackness

\[S = \text{diag}(s) = \begin{bmatrix} s_1 \\ s_2 \\ \vdots \\ s_m \end{bmatrix} \]

\[Y = \text{diag}(y) = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix} \]

\[SY1 = \text{diag}(s) \text{diag}(y)1 = \begin{bmatrix} s_1 y_1 \\ s_2 y_2 \\ \vdots \\ s_m y_m \end{bmatrix} \]

\[\begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} = \begin{bmatrix} s_1 y_1 \\ s_2 y_2 \\ \vdots \\ s_m y_m \end{bmatrix} \]
Linear optimization as a root finding problem

\[Ax + s - b = 0 \]
\[A^T y + c = 0 \]
\[s_i y_i = 0, \quad i = 1, \ldots, m \]
\[s, y \geq 0 \]

Diagonalize complementary slackness

\[S = \text{diag}(s) = \begin{bmatrix} s_1 \\ s_2 \\ \vdots \\ s_m \end{bmatrix} \]
\[Y = \text{diag}(y) = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix} \]
\[SY_1 = \text{diag}(s)\text{diag}(y)1 = \begin{bmatrix} s_1 y_1 \\ s_2 y_2 \\ \vdots \\ s_m y_m \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} = \begin{bmatrix} s_1 y_1 \\ s_2 y_2 \\ \vdots \\ s_m y_m \end{bmatrix} \]

\[s_i y_i = 0, \quad i = 1, \ldots, m \quad \iff \quad SY_1 = 0 \]
Main idea

Optimality conditions

\[
\begin{align*}
 h(y, x, s) &= \begin{bmatrix} Ax + s - b \\ A^T y + c \\ SY1 \end{bmatrix} = \begin{bmatrix} r_p \\ r_d \\ SY1 \end{bmatrix} = 0 \\
 S &= \text{diag}(s) \\
 Y &= \text{diag}(y)
\end{align*}
\]

\[
s, y \geq 0
\]

- Apply variants of Newton’s method to solve \(h(x, s, y) = 0 \)
- Enforce \(s, y > 0 \) (strictly) at every iteration
- **Motivation** avoid getting stuck in “corners”
Smoothed optimality conditions

Optimality conditions

\[Ax + s - b = 0 \]
\[A^T y + c = 0 \]
\[s_i y_i = \tau \]
\[s, y \geq 0 \]

Same optimality conditions for a “smoothed” version of our problem
Smoothed optimality conditions

Optimality conditions

\[Ax + s - b = 0 \]
\[A^T y + c = 0 \]
\[s_i y_i = \tau \quad \text{Same } \tau \text{ for every pair} \]
\[s, y \geq 0 \]

Same optimality conditions for a “smoothed” version of our problem

Duality gap

\[\kappa \preceq s^T y = (b - Ax)^T y = b^T x - x^T A^T y = b^T y + c^T x \]
Central path

minimize \quad c^T x - \tau \sum_{i=1}^{m} \log(s_i)
subject to \quad Ax + s = b

Set of points \((x^*(\tau), s^*(\tau), y^*(\tau))\)
with \(\tau > 0\) such that
\[
Ax + s - b = 0 \\
A^T y + c = 0 \\
s_i y_i = \tau \\
s, y \geq 0
\]
Central path

minimize \(c^T x - \tau \sum_{i=1}^{m} \log(s_i) \)
subject to \(Ax + s = b \)

Set of points \((x^*(\tau), s^*(\tau), y^*(\tau))\)
with \(\tau > 0\) such that
\[
Ax + s - b = 0 \\
A^T y + c = 0 \\
s_i y_i = \tau \\
s, y \geq 0
\]

Main idea
Follow central path as \(\tau \to 0\)
The path parameter

Duality measure

\[\mu = \frac{s^T y}{m} \]
(average value of the pairs \(s_i y_i \))
The path parameter

Duality measure

\[\mu = \frac{s^T y}{m} \] (average value of the pairs \(s_iy_i \))

Linear system

\[
\begin{bmatrix}
0 & A & I \\
A^T & 0 & 0 \\
S & 0 & Y
\end{bmatrix}
\begin{bmatrix}
\Delta y \\
\Delta x \\
\Delta s
\end{bmatrix}
= \begin{bmatrix}
-r_p \\
-r_d \\
-SY1 + \sigma \mu 1
\end{bmatrix}
\]
The path parameter

Duality measure
\[
\mu = \frac{s^T y}{m} \quad \text{(average value of the pairs } s_i y_i)
\]

Centering parameter
\[
\sigma \in [0, 1]
\]

Linear system
\[
\begin{bmatrix}
0 & A & I \\
A^T & 0 & 0 \\
S & 0 & Y \\
\end{bmatrix}
\begin{bmatrix}
\Delta y \\
\Delta x \\
\Delta s \\
\end{bmatrix}
=
\begin{bmatrix}
-r_p \\
-r_d \\
-SY 1 + \sigma \mu 1 \\
\end{bmatrix}
\]
The path parameter

Duality measure

\[\mu = \frac{s^T y}{m} \] (average value of the pairs \(s_i y_i \))

Centering parameter

\[\sigma \in [0, 1] \]

\[\sigma = 0 \quad \Rightarrow \quad \text{Newton step} \]

\[\sigma = 1 \quad \Rightarrow \quad \text{Centering step towards } (y^*(\mu), x^*(\mu), s^*(\mu)) \]

Linear system

\[
\begin{bmatrix}
0 & A & I \\
A^T & 0 & 0 \\
S & 0 & Y
\end{bmatrix}
\begin{bmatrix}
\Delta y \\
\Delta x \\
\Delta s
\end{bmatrix}
=
\begin{bmatrix}
-r_p \\
-r_d \\
-SY1 + \sigma \mu 1
\end{bmatrix}
\]
The path parameter

Duality measure

\[\mu = \frac{s^T y}{m} \quad \text{(average value of the pairs } s_i y_i) \]

Linear system

\[
\begin{bmatrix}
0 & A & I \\
A^T & 0 & 0 \\
S & 0 & Y
\end{bmatrix}
\begin{bmatrix}
\Delta y \\
\Delta x \\
\Delta s
\end{bmatrix}
=
\begin{bmatrix}
-r_p \\
-r_d \\
-S Y 1 + \sigma \mu 1
\end{bmatrix}
\]

Centering parameter

\[\sigma = 0 \quad \Rightarrow \quad \text{Newton step} \]

\[\sigma = 1 \quad \Rightarrow \quad \text{Centering step towards } (y^*(\mu), x^*(\mu), s^*(\mu)) \]

Line search to enforce \(s, y > 0 \)

\[(y, x, s) \leftarrow (y, x, s) + \alpha(\Delta y, \Delta x, \Delta s)\]
Path-following algorithm idea

Newton step $\sigma = 0$

Centering step $\sigma = 1$

Combined step x^*
Path-following algorithm idea

- **Centering step**
 - It brings towards the central path and is usually biased towards \(s, y > 0 \).
 - No progress on duality measure \(\mu \).

- **Newton step**
 - \(\sigma = 0 \).

- **Combined step**
 - \(\sigma = 1 \).
Path-following algorithm idea

Centering step
It brings towards the central path and is usually biased towards $s, y > 0$.
No progress on duality measure μ

Newton step
It brings towards the zero duality measure μ. Quickly violates $s, y > 0$.
Path-following algorithm idea

Centering step
It brings towards the central path and is usually biased towards $s, y > 0$.
No progress on duality measure μ

Newton step
It brings towards the zero duality measure μ. Quickly violates $s, y > 0$.

Combined step
Best of both worlds with longer steps
Path-following algorithm idea

Central path

Centering step
It brings towards the central path and is usually biased towards $s, y > 0$.
No progress on duality measure μ

Newton step
It brings towards the zero duality measure μ. Quickly violates $s, y > 0$.

Combined step
Best of both worlds with longer steps
Primal-dual path-following algorithm

Initialization
1. Given \((x_0, s_0, y_0)\) such that \(s_0, y_0 > 0\)

Iterations
1. Choose \(\sigma \in [0, 1]\)

\[
\begin{bmatrix}
0 & A & I \\
A^T & 0 & 0 \\
S & 0 & Y
\end{bmatrix}
\begin{bmatrix}
\Delta y \\
\Delta x \\
\Delta s
\end{bmatrix}
=
\begin{bmatrix}
-r_p \\
-r_d \\
-SY1 + \sigma \mu 1
\end{bmatrix}
\]

where \(\mu = s^T y / m\)

2. Solve

3. Find maximum \(\alpha\) such that \(y + \alpha \Delta y > 0\) and \(s + \alpha \Delta s > 0\)

4. Update \((y, x, s) \leftarrow (y, x, s) + \alpha(\Delta y, \Delta x, \Delta s)\)
Today’s lecture
Interior-point methods II

• Mehrotra predictor-corrector algorithm
• Implementation and linear algebra
• Interior-point vs simplex
Predictor-corrector algorithm
Main idea
Predict and select centering parameter

Predict
Compute Newton direction

Newton step $\sigma = 0$

Centering step $\sigma = 1$

Combined step x^*
Main idea
Predict and select centering parameter

Newton step $\sigma = 0$

Centering step $\sigma = 1$

Combined step x^*

Predict
Compute Newton direction

Estimate
How good is the Newton step?
(how much can μ decrease?)
Main idea
Predict and select centering parameter

Predict
Compute Newton direction

Estimate
How good is the Newton step?
(how much can μ decrease?)

Select centering parameter
Very roughly:
Pick $\sigma \approx 0$ if Newton step is good
Pick $\sigma \approx 1$ if Newton step is bad
How good is the Newton step?

Newton step

\((\Delta x_a, \Delta s_a, \Delta y_a)\)

Maximum step-size

\[\alpha_p = \max\{\alpha \in [0, 1] \mid s + \alpha \Delta s_a \geq 0\}\]
\[\alpha_d = \max\{\alpha \in [0, 1] \mid y + \alpha \Delta y_a \geq 0\}\]
How good is the Newton step?

Newton step
\[(\Delta x_a, \Delta s_a, \Delta y_a)\]

Maximum step-size
\[\alpha_p = \max\{\alpha \in [0, 1] \mid s + \alpha \Delta s_a \geq 0\}\]
\[\alpha_d = \max\{\alpha \in [0, 1] \mid y + \alpha \Delta y_a \geq 0\}\]

Two issues
- The new points will not produce much improvement:
 \[(s + \alpha_p \Delta s_a)_i (y + \alpha_d \Delta y_a)_i \text{ much larger than } 0\]
- The complementarity error depends on step lengths \(\alpha_p\) and \(\alpha_d\)
Choosing a centering parameter to make good improvement

Newton step

\((\Delta x_a, \Delta s_a, \Delta y_a)\)

Maximum step-size

\(\alpha_p = \max\{\alpha \in [0, 1] \mid s + \alpha \Delta s_a \geq 0\}\)

\(\alpha_d = \max\{\alpha \in [0, 1] \mid y + \alpha \Delta y_a \geq 0\}\)
Choosing a centering parameter to make good improvement

Newton step

\[(\Delta x_a, \Delta s_a, \Delta y_a)\]

Maximum step-size

\[\alpha_p = \max\{\alpha \in [0, 1] \mid s + \alpha \Delta s_a \geq 0\}\]
\[\alpha_d = \max\{\alpha \in [0, 1] \mid y + \alpha \Delta y_a \geq 0\}\]

Duality measure candidate

(after Newton step)

\[\mu_a = \frac{(s + \alpha_p \Delta s_a)^T (y + \alpha_d \Delta y_a)}{m}\]
Choosing a centering parameter to make good improvement

Newton step
\[(\Delta x_a, \Delta s_a, \Delta y_a)\]

Maximum step-size
\[
\alpha_p = \max\{\alpha \in [0, 1] \mid s + \alpha \Delta s_a \geq 0\}
\]
\[
\alpha_d = \max\{\alpha \in [0, 1] \mid y + \alpha \Delta y_a \geq 0\}
\]

Duality measure candidate (after Newton step)
\[
\mu_a = \frac{(s + \alpha_p \Delta s_a)^T (y + \alpha_d \Delta y_a)}{m}
\]

Centering parameter heuristic \(\sigma\)
\[
\sigma = \left(\frac{\mu_a}{\mu}\right)^3
\]
Correcting for complementary error

Newton step

\[
\begin{bmatrix}
0 & A & I \\
A^T & 0 & 0 \\
S & 0 & Y
\end{bmatrix}
\begin{bmatrix}
\Delta y_a \\
\Delta x_a \\
\Delta s_a
\end{bmatrix}
=
\begin{bmatrix}
-r_p \\
-r_d \\
-SY_1
\end{bmatrix}
\]
Correcting for complementary error

Newton step

\[
\begin{bmatrix}
0 & A & I \\
A^T & 0 & 0 \\
S & 0 & Y \\
\end{bmatrix} \begin{bmatrix}
\Delta y_a \\
\Delta x_a \\
\Delta s_a \\
\end{bmatrix} = \begin{bmatrix}
-r_p \\
-r_d \\
-SY1 \\
\end{bmatrix}
\]

\[s_i(\Delta y_a)_i + y_i(\Delta s_a)_i + s_i y_i = 0\]
Correcting for complementary error

Newton step

\[
\begin{bmatrix}
0 & A & I \\
A^T & 0 & 0 \\
S & 0 & Y
\end{bmatrix}
\begin{bmatrix}
\Delta y_a \\
\Delta x_a \\
\Delta s_a
\end{bmatrix} =
\begin{bmatrix}
-r_p \\
-r_d \\
-SY 1
\end{bmatrix} \quad \rightarrow \quad s_i(\Delta y_a)_i + y_i(\Delta s_a)_i + s_i y_i = 0
\]

Complementarity error

\[
(s_i + (\Delta s_a)_i)(y_i + (\Delta y_a)_i) = (\Delta s_a)_i(\Delta y_a)_i \neq 0
\]

Complementarity violation depends on step length
Correcting for complementary error

Newton step

\[
\begin{bmatrix}
0 & A & I \\
A^T & 0 & 0 \\
S & 0 & Y
\end{bmatrix}
\begin{bmatrix}
\Delta y_a \\
\Delta x_a \\
\Delta s_a
\end{bmatrix}
= \begin{bmatrix}
-r_p \\
-r_d \\
-sY1
\end{bmatrix}
\rightarrow
s_i(\Delta y_a)_i + y_i(\Delta s_a)_i + s_i y_i = 0
\]

Complementarity error

\[(s_i + (\Delta s_a)_i)(y_i + (\Delta y_a)_i) = (\Delta s_a)_i(\Delta y_a)_i \neq 0\]

Complementarity violation

depends on step length

Corrected direction

\[
\begin{bmatrix}
0 & A & I \\
A^T & 0 & 0 \\
S & 0 & Y
\end{bmatrix}
\begin{bmatrix}
\Delta y \\
\Delta x \\
\Delta s
\end{bmatrix}
= \begin{bmatrix}
-r_p \\
-r_d \\
-sY1
\end{bmatrix}
- \Delta S_a \Delta Y_a 1 + \sigma \mu 1
\]

\[
\Delta S_a = \text{diag}(\Delta s_a)
\]

\[
\Delta Y_a = \text{diag}(\Delta y_a)
\]
Mehrotra predictor-corrector algorithm

Initialization

Given \((x, s, y)\) such that \(s, y > 0\)

1. Termination conditions

\[r_p = Ax + s - b, \quad r_d = A^T y + c, \quad \mu = (s^T y)/m \]

If \(||r_p||, ||r_d||, \mu\) are small, break Optimal solution \((x^*, s^*, y^*)\)

2. Newton step (affine scaling)

\[
\begin{bmatrix}
0 & A & I \\
A^T & 0 & 0 \\
S & 0 & Y
\end{bmatrix}
\begin{bmatrix}
\Delta y_a \\
\Delta x_a \\
\Delta s_a
\end{bmatrix}
=
\begin{bmatrix}
-r_p \\
-r_d \\
-SY1
\end{bmatrix}
\]
Mehrotra predictor-corrector algorithm

3. Barrier parameter

\[\alpha_p = \max\{\alpha \in [0, 1] \mid s + \alpha \Delta s_a \geq 0\}\]
\[\alpha_d = \max\{\alpha \in [0, 1] \mid y + \alpha \Delta y_a \geq 0\}\]

\[\mu_a = \frac{(s + \alpha_p \Delta s_a)^T(y + \alpha_d \Delta y_a)}{m}\]

\[\sigma = \left(\frac{\mu_a}{\mu}\right)^3\]

4. Corrected direction

\[
\begin{bmatrix}
0 & A & I \\
A^T & 0 & 0 \\
S & 0 & Y
\end{bmatrix}
\begin{bmatrix}
\Delta y \\
\Delta x \\
\Delta s
\end{bmatrix}
=
\begin{bmatrix}
-r_p \\
-r_d \\
-\sigma \mu \mathbf{1}
\end{bmatrix}
\]

\[
\mathbf{1} = \begin{bmatrix} 1 & \cdots & 1 \end{bmatrix}^T
\]
5. **Update iterates**

\[
\alpha_p = \max\{\alpha \geq 0 \mid s + \alpha \Delta s \geq 0\}
\]

\[
\alpha_d = \max\{\alpha \geq 0 \mid y + \alpha \Delta y \geq 0\}
\]

\[
(x, s) = (x, s) + \min\{1, \eta \alpha_p\}(\Delta x, \Delta s)
\]

\[
y = y + \min\{1, \eta \alpha_d\}\Delta y
\]

Avoid corners

\[
\eta = 1 - \epsilon \approx 0.99
\]
Implementation and linear algebra
Search equations

Step 2 (Newton) and 4 (Corrected direction) solve equations of the form

\[
\begin{bmatrix}
0 & A & I \\
A^T & 0 & 0 \\
S & 0 & Y
\end{bmatrix}
\begin{bmatrix}
\Delta y \\
\Delta x \\
\Delta s
\end{bmatrix}
=
\begin{bmatrix}
b_y \\
b_x \\
b_s
\end{bmatrix}
\]

The Newton step right hand side:

\[
\begin{bmatrix}
b_y \\
b_x \\
b_s
\end{bmatrix}
=
\begin{bmatrix}
-r_p \\
r_d \\
-SY1
\end{bmatrix}
\]

The corrector step right hand side:

\[
\begin{bmatrix}
b_y \\
b_x \\
b_s
\end{bmatrix}
=
\begin{bmatrix}
r_p \\
r_d \\
SY1 + \Delta S_a \Delta Y_a 1 + \sigma \mu 1
\end{bmatrix}
\]
Solving the search equations

Our linear system is not symmetric

\[
\begin{bmatrix}
0 & A & I \\
A^T & 0 & 0 \\
S & 0 & Y \\
\end{bmatrix}
\begin{bmatrix}
\Delta y \\
\Delta x \\
\Delta s \\
\end{bmatrix}
=
\begin{bmatrix}
b_y \\
b_x \\
b_s \\
\end{bmatrix}
\]
Solving the search equations

Our linear system is not symmetric

\[
\begin{bmatrix}
0 & A & I \\
A^T & 0 & 0 \\
S & 0 & Y
\end{bmatrix}
\begin{bmatrix}
\Delta y \\
\Delta x \\
\Delta s
\end{bmatrix}
=
\begin{bmatrix}
b_y \\
b_x \\
b_s
\end{bmatrix}
\]

\[
\Sigma \Delta y + Y \Delta s = b_s
\]

Substitute last equation, \(\Delta s = Y^{-1}(b_s - S\Delta y) \), into first

\[
\begin{bmatrix}
-Y^{-1}S & A \\
A^T & 0
\end{bmatrix}
\begin{bmatrix}
\Delta y \\
\Delta x
\end{bmatrix}
=
\begin{bmatrix}
b_y - Y^{-1}b_s \\
b_x
\end{bmatrix}
\]
Solving the search equations

Our reduced system is symmetric but not positive definite
Solving the search equations

Our reduced system is symmetric but not positive definite

\[
\begin{bmatrix}
-Y^{-1}S & A \\
A^T & 0
\end{bmatrix}
\begin{bmatrix}
\Delta y \\
\Delta x
\end{bmatrix} =
\begin{bmatrix}
b_y - Y^{-1}b_s \\
b_x
\end{bmatrix}
\]
Solving the search equations

Our reduced system is symmetric but not positive definite

\[
\begin{bmatrix}
-Y^{-1}S & A \\
A^T & 0
\end{bmatrix}
\begin{bmatrix}
\Delta y \\
\Delta x
\end{bmatrix}
= \begin{bmatrix}
b_y - Y^{-1}b_s \\
b_x
\end{bmatrix}
\]

Substitute first equation:
\[\Delta y = S^{-1}Y (A\Delta x - b_y + Y^{-1}b_s),\] into second

\[A^T S^{-1}YA \Delta x = b_x + A^T S^{-1}Y b_y - A^T S^{-1}b_s\]
Reduced linear system

Coefficient matrix

\[B = A^T S^{-1} Y A \]

Characteristics

- \(A \) is large and sparse
- \(S^{-1} Y \) is positive and diagonal, different at each iteration
- \(B \) is positive definite if \(\text{rank}(A) = n \)
- Sparsity pattern of \(B \) is the pattern of \(A^T A \) (independent of \(S^{-1} Y \)
Reduced linear system

Coefficient matrix

\[B = A^T S^{-1} Y A \]

Cholesky factorizations

\[B = P L L^T P^T \]

• Reordering only once to get \(P \)
• One numerical factorization per interior-point iteration \(O(n^3) \)
• Forward/backward substitution twice per iteration \(O(n^2) \)
Reduced linear system

Coefficient matrix

\[B = A^T S^{-1} Y A \]

Cholesky factorizations

\[B = PLL^T P^T \]

- Reordering only once to get \(P \)
- One numerical factorization per interior-point iteration \(O(n^3) \)
- Forward/backward substitution twice per iteration \(O(n^2) \)
Convergence

Mehrotra’s algorithm

No convergence theory \rightarrow Examples where it diverges (rare!)
Convergence

Mehrotra’s algorithm

No convergence theory → Examples where it diverges (rare!)
Fantastic convergence in practice → Less than 30 iterations
Convergence

Mehrotra’s algorithm

No convergence theory → Examples where it diverges (rare!)

Fantastic convergence in practice → Less than 30 iterations

Theoretical iteration complexity

Alternative versions (slower than Mehrotra) converge in $O(\sqrt{n})$ iterations
Convergence

Mehrotra’s algorithm

No convergence theory \rightarrow Examples where it diverges (rare!)
Fantastic convergence in practice \rightarrow Less than 30 iterations

Theoretical iteration complexity
Alternative versions (slower than Mehrotra)
converge in $O(\sqrt{n})$ iterations

Average iteration complexity
Average iterations complexity is $O(\log n)$
Convergence

Mehrotra’s algorithm

No convergence theory \rightarrow Examples where it diverges (rare!)

Fantastic convergence in practice \rightarrow Less than 30 iterations

Theoretical iteration complexity

Alternative versions (slower than Mehrotra) converge in $O(\sqrt{n})$ iterations

Average iteration complexity

Average iterations complexity is $O(\log n)$

Floating point operations

$O(n^{3.5})$ \rightarrow $O(n^3 \log n)$
Warm-starting

Interior-point methods are difficult to warm-start
Warm-starting

Interior-point methods are **difficult to warm-start**

Previous solution
Warm-starting

Interior-point methods are **difficult to warm-start**

Previous solution

\star x^*

Badly centered initial point

Hard to make progress with long steps
Interior-point vs simplex
Example

minimize \(-10x_1 - 12x_2 - 12x_3\)
subject to
\[\begin{align*}
 x_1 + 2x_2 + 2x_3 &\leq 20 \\
 2x_1 + x_2 + x_3 &\leq 20 \\
 2x_1 + 2x_2 + x_3 &\leq 20 \\
 x_1, x_2, x_3 &\geq 0
\end{align*}\]
Example

minimize \(-10x_1 - 12x_2 - 12x_3\)
subject to
\(x_1 + 2x_2 + 2x_3 \leq 20\)
\(2x_1 + x_2 + x_3 \leq 20\)
\(2x_1 + 2x_2 + x_3 \leq 20\)
\(x_1, x_2, x_3 \geq 0\)

minimize \(c^T x\)
subject to \(Ax \leq b\)
\(x \geq 0\)

\(c = (-10, -12, -12)\)
\(A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}\)
\(b = (20, 20, 20)\)
Example with real solver
CVXOPT (open-source)

Code

```python
import numpy as np
import cvxpy as cp

c = np.array([-10, -12, -12])
A = np.array([[1, 2, 2],
              [2, 1, 2],
              [2, 2, 1]])
b = np.array([20, 20, 20])
n = len(c)

x = cp.Variable(n)
problem = cp.Problem(cp.Minimize(c @ x),
                     [A @ x <= b, x >= 0])
problem.solve(solver=cp.CVXOPT, verbose=True)
```

Output

```
Code Output

<table>
<thead>
<tr>
<th>pcost</th>
<th>dcost</th>
<th>gap</th>
<th>pres</th>
<th>dres</th>
<th>k/t</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.3077e+02</td>
<td>-2.3692e+02</td>
<td>2e+01</td>
<td>1e-16</td>
<td>6e-01</td>
<td>1e+00</td>
</tr>
<tr>
<td>-1.3522e+02</td>
<td>-1.4089e+02</td>
<td>1e+00</td>
<td>2e-16</td>
<td>3e-02</td>
<td>4e-02</td>
</tr>
<tr>
<td>-1.3599e+02</td>
<td>-1.3605e+02</td>
<td>1e-02</td>
<td>2e-16</td>
<td>3e-04</td>
<td>4e-04</td>
</tr>
<tr>
<td>-1.3600e+02</td>
<td>-1.3600e+02</td>
<td>1e-04</td>
<td>1e-16</td>
<td>3e-06</td>
<td>4e-06</td>
</tr>
<tr>
<td>-1.3600e+02</td>
<td>-1.3600e+02</td>
<td>1e-06</td>
<td>1e-16</td>
<td>3e-08</td>
<td>4e-08</td>
</tr>
</tbody>
</table>

Optimal solution found.
```

Solution

```
In [3]: x.value
Out[3]: array([3.99999999, 4. , 4. ])
```

[The CVXOPT linear and quadratic cone program solvers, L. Vandenberghhe 2010]
Average interior-point complexity

Random LPs

minimize \(c^T x \)
subject to \(Ax \leq b \)
n variables
3n constraints
Average interior-point complexity

Random LPs

minimize \(c^T x \) \(n \) variables
subject to \(Ax \leq b \) \(3n \) constraints

Iterations: \(O(\log n) \)
Average interior-point complexity

Random LPs

minimize \(c^T x \) \(n \) variables
subject to \(Ax \leq b \) \(3n \) constraints

Iterations: \(O(\log n) \)

Time: \(O(n^3 \log n) \)
Comparison between interior-point method and simplex

Primal simplex
- Primal feasibility
- Zero duality gap

Dual feasibility

Primal feasibility

Dual simplex
- Dual feasibility
- Zero duality gap

Primal feasibility

Primal-dual interior-point
- Interior condition

- Primal feasibility
- Dual feasibility
- Zero duality gap
Comparison between interior-point method and simplex

- **Primal simplex**
 - Primal feasibility
 - Zero duality gap

- **Dual simplex**
 - Dual feasibility
 - Zero duality gap

- **Primal-dual interior-point**
 - Interior condition
 - Primal feasibility
 - Dual feasibility
 - Zero duality gap

Exponential worst-case complexity

Polynomial worst-case complexity
Comparison between interior-point method and simplex

<table>
<thead>
<tr>
<th>Primal simplex</th>
<th>Dual simplex</th>
<th>Primal-dual interior-point</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Primal feasibility</td>
<td>• Dual feasibility</td>
<td>• Interior condition</td>
</tr>
<tr>
<td>• Zero duality gap</td>
<td>• Zero duality gap</td>
<td>• Primal feasibility</td>
</tr>
<tr>
<td>Dual feasibility</td>
<td>Primal feasibility</td>
<td>• Dual feasibility</td>
</tr>
<tr>
<td>Exponential worst-case complexity</td>
<td>Polynomial worst-case complexity</td>
<td>• Zero duality gap</td>
</tr>
<tr>
<td>Requires feasible point</td>
<td>Allows infeasible start</td>
<td></td>
</tr>
</tbody>
</table>
Comparison between interior-point method and simplex

Primal simplex
- Primal feasibility
- Zero duality gap

Dual feasibility

Dual simplex
- Dual feasibility
- Zero duality gap

Primal feasibility

Primal-dual interior-point
- Interior condition

Exponential worst-case complexity
- Requires feasible point
- Can be warm-started

Polynomial worst-case complexity
- Allows infeasible start
- Cannot be warm-started
Which algorithm should I use?

<table>
<thead>
<tr>
<th>Dual simplex</th>
<th>Interior-point (barrier)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Small-to-medium problems</td>
<td>• Medium-to-large problems</td>
</tr>
<tr>
<td>• Repeated solves with varying data</td>
<td>• Sparse structured problems</td>
</tr>
</tbody>
</table>
Which algorithm should I use?

<table>
<thead>
<tr>
<th>Dual simplex</th>
<th>Interior-point (barrier)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Small-to-medium problems</td>
<td>• Medium-to-large problems</td>
</tr>
<tr>
<td>• Repeated solves with varying data</td>
<td>• Sparse structured problems</td>
</tr>
</tbody>
</table>

How do solvers with multiple options decide?

Concurrent Optimization
Which algorithm should I use?

Dual simplex
- Small-to-medium problems
- Repeated solves with varying data

Interior-point (barrier)
- Medium-to-large problems
- Sparse structured problems

How do solvers with multiple options decide?
Concurrent Optimization

Why not both? (crossover)
Interior-point ➔ Few simplex steps
Interior-point methods implementation

Today, we learned to:

• **Apply** Mehrotra predictor-corrector algorithm
• **Exploit** linear algebra to speedup computations
• **Analyze** empirical complexity
• **Compare** interior-point and simplex methods
References

• D. Bertsimas and J. Tsitsiklis: Introduction to Linear Optimization
 • Chapter 9.4 — 9.6: Interior point methods

• R. Vanderbei: Linear Programming
 • Chapter 17: The Central Path
 • Chapter 15: A Path-Following Method
Next lecture

- Overview for linear optimization