Ed Forum

• A feasible direction is any direction that "stays in" P, whereas a basic direction is one that points in the direction of a neighboring basic solution. Is there a difference between a feasible direction and a basic direction?

• Why does maximizing the lower bound of the cost make it “better”?

Recap
Optimal objective values

Primal
minimize $c^T x$
subject to $Ax \leq b$

p^* is the primal optimal value

Dual
maximize $-b^T y$
subject to $A^T y + c = 0$
y ≥ 0

d* is the dual optimal value

Primal infeasible: $p^* = +\infty$
Primal unbounded: $p^* = -\infty$

Dual infeasible: $d^* = -\infty$
Dual unbounded: $d^* = +\infty$
Relationship between primal and dual

<table>
<thead>
<tr>
<th></th>
<th>(p^* = +\infty)</th>
<th>(p^*) finite</th>
<th>(p^* = -\infty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d^* = +\infty)</td>
<td>primal inf. dual unb.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(d^*) finite</td>
<td></td>
<td>optimal values equal</td>
<td></td>
</tr>
<tr>
<td>(d^* = -\infty)</td>
<td>exception</td>
<td></td>
<td>primal unb. dual inf</td>
</tr>
</tbody>
</table>

- Upper-right excluded by **weak duality**
- \((1, 1)\) and \((3, 3)\) proven by **weak duality**
- \((3, 1)\) and \((2, 2)\) proven by **strong duality**
Today’s agenda
More on duality

• Two-person zero-sum games
• Farkas lemma
• Complementary slackness
• KKT conditions
Two-person games
Rock paper scissors

Rules
At count to three declare one of: Rock, Paper, or Scissors

Winners
Identical selection is a draw, otherwise:
• Rock beats (“dulls”) scissors
• Scissors beats (“cuts”) paper
• Paper beats (“covers”) rock

Extremely popular: world RPS society, USA RPS league, etc.
Two-person zero-sum game

- Player 1 (P1) chooses a number $i \in \{1, \ldots, m\}$ (one of m actions)
- Player 2 (P2) chooses a number $j \in \{1, \ldots, n\}$ (one of n actions)

Two players make their choice independently

Rule

Player 1 pays A_{ij} to player 2

$A \in \mathbb{R}^{m \times n}$ is the **payoff matrix**

Rock, Paper, Scissors

\[
A = \begin{bmatrix}
R & P & S \\
0 & 1 & -1 \\
-1 & 0 & 1 \\
1 & -1 & 0
\end{bmatrix}
\]
Mixed (randomized) strategies

Deterministic strategies can be systematically defeated

Randomized strategies

- P1 chooses randomly according to distribution x:
 $$x_i = \text{probability that P1 selects action } i$$

- P2 chooses randomly according to distribution y:
 $$y_j = \text{probability that P2 selects action } j$$

Expected payoff (from P1 P2), if they use mixed-strategies x and y,

$$\sum_{i=1}^{m} \sum_{j=1}^{n} x_i y_j A_{ij} = x^T A y$$
Mixed strategies and probability simplex

Probability simplex in \mathbb{R}^k

$P_k = \{ p \in \mathbb{R}^k \mid p \geq 0, \quad 1^T p = 1 \}$

Mixed strategy

For a game player, a mixed strategy is a distribution over all possible deterministic strategies.

The set of all mixed strategies is the probability simplex $\rightarrow x \in P_m, \quad y \in P_n$
Optimal mixed strategies

P1: optimal strategy x^* is the solution of

\[
\text{minimize} \quad \max_{y \in P_n} x^T A y \\
\text{subject to} \quad x \in P_m
\]

P2: optimal strategy y^* is the solution of

\[
\text{maximize} \quad \min_{x \in P_m} x^T A y \\
\text{subject to} \quad y \in P_n
\]

Optimal strategies x^* and y^* can be computed using linear optimization.
Minmax theorem

Theorem

\[
\max_{y \in P_n} \min_{x \in P_m} x^T Ay = \min_{x \in P_m} \max_{y \in P_n} x^T Ay
\]

Proof

The optimal \(x^* \) is the solution of

minimize \(t \)

subject to

\(A^T x \leq t1 \)
\(1^T x = 1 \)
\(x \geq 0 \)

The optimal \(y^* \) is the solution of

maximize \(w \)

subject to

\(Ay \geq w1 \)
\(1^T y = 1 \)
\(y \geq 0 \)

The two LPs are **duals** and by **strong duality** the equality follows.
Nash equilibrium

Theorem

\[
\max_{y \in P_n} \min_{x \in P_m} x^T A y = \min_{x \in P_m} \max_{y \in P_n} x^T A y
\]

Consequence

The pair of mixed strategies \((x^*, y^*)\) attains the Nash equilibrium of the two-person matrix game, i.e.,

\[
x^T A y^* \geq x^{*T} A y^* \geq x^{*T} A y, \quad \forall x \in P_m, \ \forall y \in P_n
\]
Example

\[
A = \begin{bmatrix}
4 & 2 & 0 & -3 \\
-2 & -4 & -3 & 3 \\
-2 & -3 & 4 & 1
\end{bmatrix}
\]

Optimal deterministic strategies
\[
\min_i \max_j A_{ij} = 3 > -2 = \max_j \min_i A_{ij}
\]

Optimal mixed strategies
\[
x^* = (0.37, 0.33, 0.3), \quad y^* = (0.4, 0, 0.13, 0.47)
\]

Expected payoff
\[
x^T A y^* = 0.2
\]
Farkas lemma
Feasibility of polyhedra

\[P = \{ x \mid Ax = b, \quad x \geq 0 \} \]

How to show that \(P \) is **feasible**?
Easy: we just need to provide an \(x \in P \), i.e., a **certificate**

How to show that \(P \) is **infeasible**?
Farkas lemma

Theorem
Given A and b, exactly one of the following statements is true:

1. There exists an x with $Ax = b$, $x \geq 0$
2. There exists a y with $A^T y \geq 0$, $b^T y < 0$
Farkas lemma

Geometric interpretation

1. First alternative
 There exists an \(x \) with \(Ax = b, x \geq 0 \)
 \[b = \sum_{i=1}^{n} x_i A_i, \quad x_i \geq 0, \quad i = 1, \ldots, n \]
 \(b \) is in the cone generated by the columns of \(A \)

2. Second alternative
 There exists a \(y \) with \(A^T y \geq 0, b^T y < 0 \)
 \[y^T A_i \geq 0, \quad i = 1, \ldots, m, \quad y^T b < 0 \]
 The hyperplane \(y^T z = 0 \) separates \(b \) from \(A_1, \ldots, A_n \)
Farkas lemma

There exists x with $Ax = b, \ x \geq 0$ \hspace{1cm} \textbf{OR} \hspace{1cm} \text{There exists } y \text{ with } A^T y \geq 0, \ b^T y < 0$

Proof

1 and 2 cannot be both true (easy)

\[x \geq 0, \ Ax = b \text{ and } y^T A \geq 0 \hspace{1cm} \rightarrow \hspace{1cm} y^T b = y^T Ax \geq 0 \]
Farkas lemma

There exists x with $Ax = b$, $x \geq 0$ \text{ OR } There exists y with $A^T y \geq 0$, $b^T y < 0$

Proof

1 and 2 cannot be both false (duality)

Primal

| minimize | 0 |
| subject to | $Ax = b$, $x \geq 0$ |

Dual

| maximize $-b^T y$ |
| subject to | $A^T y \geq 0$ |

$y = 0$ always feasible

Strong duality holds

$d^* \neq -\infty$, $p^* = d^*$
Farkas lemma

There exists \(x \) with \(Ax = b, \ x \geq 0 \) \ OR \ There exists \(y \) with \(A^T y \geq 0, \ b^T y < 0 \)

Proof

1 and 2 cannot be both false (duality)

<table>
<thead>
<tr>
<th>Primal</th>
<th>Dual</th>
</tr>
</thead>
<tbody>
<tr>
<td>minimize (0)</td>
<td>maximize (-b^T y)</td>
</tr>
<tr>
<td>subject to (Ax = b)</td>
<td>subject to (A^T y \geq 0)</td>
</tr>
<tr>
<td>(x \geq 0)</td>
<td></td>
</tr>
</tbody>
</table>

Alternative 1: primal feasible \(p^* = d^* = 0 \)

\(b^T y \geq 0 \) for all \(y \) such that \(A^T y \geq 0 \)
Farkas lemma

There exists \(x \) with \(Ax = b, \ x \geq 0 \) \ OR \ There exists \(y \) with \(A^T y \geq 0, \ b^T y < 0 \)

Proof

1 and 2 cannot be both false (duality)

<table>
<thead>
<tr>
<th>Primal</th>
<th>Dual</th>
</tr>
</thead>
<tbody>
<tr>
<td>minimize (0)</td>
<td>maximize (-b^T y)</td>
</tr>
<tr>
<td>subject to (Ax = b)</td>
<td>subject to (A^T y \geq 0)</td>
</tr>
<tr>
<td>(x \geq 0)</td>
<td></td>
</tr>
</tbody>
</table>

Alternative 2: primal infeasible \(p^* = d^* = +\infty \)

There exists \(y \) such that \(A^T y \geq 0 \) and \(b^T y < 0 \)

\(y \) is an infeasibility certificate
Farkas lemma
Many variations

There exists x with $Ax = b$, $x \geq 0$

or

There exists y with $A^T y \geq 0$, $b^T y < 0$

There exists x with $Ax \leq b$, $x \geq 0$

or

There exists y with $A^T y \geq 0$, $b^T y < 0$, $y \geq 0$

There exists x with $Ax \leq b$

or

There exists y with $A^T y = 0$, $b^T y < 0$, $y \geq 0$
Complementary slackness
Optimality conditions

<table>
<thead>
<tr>
<th>Primal</th>
<th>Dual</th>
</tr>
</thead>
<tbody>
<tr>
<td>minimize (c^T x)</td>
<td>maximize (-b^T y)</td>
</tr>
<tr>
<td>subject to (Ax \leq b)</td>
<td>subject to (A^T y + c = 0) (y \geq 0)</td>
</tr>
</tbody>
</table>

\(x \) and \(y \) are **primal** and **dual** optimal if and only if

- \(x \) is **primal feasible**: \(Ax \leq b \)
- \(y \) is **dual feasible**: \(A^T y + c = 0 \) and \(y \geq 0 \)
- The **duality gap** is zero: \(c^T x + b^T y = 0 \)

Can we **relate** \(x \) and \(y \) (not only the objective)?
Complementary slackness

<table>
<thead>
<tr>
<th>Primal</th>
<th>Dual</th>
</tr>
</thead>
<tbody>
<tr>
<td>minimize $c^T x$</td>
<td>maximize $-b^T y$</td>
</tr>
<tr>
<td>subject to $Ax \leq b$</td>
<td>subject to $A^T y + c = 0$</td>
</tr>
</tbody>
</table>

Theorem
Primal,dual feasible x, y are optimal if and only if

$$y_i (b_i - a_i^T x) = 0, \quad i = 1, \ldots, m$$

i.e., at optimum, $b - Ax$ and y have a complementary sparsity pattern:

$$y_i > 0 \quad \Rightarrow \quad a_i^T x = b_i$$

$$a_i^T x < b_i \quad \Rightarrow \quad y_i = 0$$
Complementary slackness

Primal

minimize \(c^T x \)
subject to \(Ax \leq b \)

Dual

maximize \(-b^T y \)
subject to \(A^T y + c = 0 \)
\(y \geq 0 \)

Proof

The duality gap at primal feasible \(x \) and dual feasible \(y \) can be written as
\[
c^T x + b^T y = (-A^T y)^T x + b^T y = (b - Ax)^T y = \sum_{i=1}^{m} y_i (b_i - a_i^T x) = 0
\]

Since all the elements of the sum are nonnegative, they must all be 0.

For feasible \(x \) and \(y \) complementary slackness = zero duality gap
Example

minimize \(-4x_1 - 5x_2\)

subject to

\[
\begin{bmatrix}
-1 & 0 \\
2 & 1 \\
0 & -1 \\
1 & 2
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
\leq
\begin{bmatrix}
0 \\
3 \\
0 \\
3
\end{bmatrix}
\]

Let’s show that feasible \(x = (1, 1)\) is optimal

Second and fourth constraints are active at \(x \rightarrow y = (0, y_2, 0, y_4)\)

\[A^T y = -c \Rightarrow \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} y_2 \\ y_4 \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}\]

and \(y_2 \geq 0, \ y_4 \geq 0\)

\(y = (0, 1, 0, 2)\) satisfies these conditions and proves that \(x\) is optimal

Complementary slackness is useful to recover \(y^*\) from \(x^*\)
Geometric interpretation
Example in \mathbb{R}^2

Two active constraints at optimum: $a_1^T x^* = b_1, \quad a_2^T x^* = b_2$

Optimal dual solution y satisfies:

$$A^T y + c = 0, \quad y \geq 0, \quad y_i = 0 \text{ for } i \neq \{1, 2\}$$

In other words, $-c = a_1 y_1 + a_2 y_2$ with $y_1, y_2 \geq 0$
KKT Conditions
Lagrangian and duality

Primal

- minimize $c^T x$
- subject to $Ax \leq b$

Dual function

$$g(y) = \min_x (c^T x + y^T (Ax - b))$$

$$= -b^T y + \min_x (c + A^T y)^T x$$

$$= \begin{cases} -b^T y & \text{if } c + A^T y = 0 \\ -\infty & \text{otherwise} \end{cases}$$

Lagrangian

$$L(x, y) = c^T x + y^T (Ax - b)$$

$$\nabla_x L(x, y) = c + A^T y = 0$$

Dual

- maximize $-b^T y$
- subject to $A^T y + c = 0$
- $y \geq 0$
Karush-Kuhn-Tucker conditions

Optimality conditions for linear optimization

<table>
<thead>
<tr>
<th>Primal</th>
<th>Dual</th>
</tr>
</thead>
<tbody>
<tr>
<td>minimize $c^T x$</td>
<td>maximize $-b^T y$</td>
</tr>
</tbody>
</table>
| subject to $Ax \leq b$ | subject to $A^T y + c = 0$
| | $y \geq 0$ |

Primal feasibility

$Ax \leq b$

Dual feasibility

$\nabla_x L(x, y) = A^T y + c = 0$ and $y \geq 0$

Complementary slackness

$y_i(Ax - b)_i = 0, \quad i = 1, \ldots, m$
Karush-Kuhn-Tucker conditions

Solving linear optimization problems

<table>
<thead>
<tr>
<th>Primal</th>
<th>Dual</th>
</tr>
</thead>
<tbody>
<tr>
<td>minimize $c^T x$</td>
<td>maximize $-b^T y$</td>
</tr>
<tr>
<td>subject to $Ax \leq b$</td>
<td>subject to $A^T y + c = 0$</td>
</tr>
<tr>
<td></td>
<td>$y \geq 0$</td>
</tr>
</tbody>
</table>

We can solve our optimization problem by solving a system of equations

$$\nabla_x L(x, y) = A^T y + c = 0$$

$$b - Ax \geq 0$$

$$y \geq 0$$

$$y^T (b - Ax) = 0$$
Linear optimization duality

Today, we learned to:

• **Interpret** linear optimization duality using game theory
• **Prove** Farkas lemma using duality
• **Geometrically link** primal and dual solutions with complementary slackness
• **Derive** KKT optimality conditions
References

• Bertsimas and Tsitsiklis: Introduction to Linear Optimization
 • Chapter 4: Duality theory
• R. Vanderbei: Linear Programming — Foundations and Extensions
 • Chapter 11: Game Theory
Next lecture

- Sensitivity analysis