
Mixed-Integer Optimal Control of
Fast Dynamical Systems

8

 University of Oxford visual identity guidelines

Wherever possible the Oxford logo must appear
in the University colour: Oxford blue (Pantone 282
and its CMYK and RGB equivalents. See page 20).

However, there are circumstances where the
accurate reproduction of the logo in Oxford blue is
not possible. These include print media where only
black ink is available, such as press advertisements,
or black and white laser printing.

In these circumstances, the use of the Oxford logo
in black is permitted. However, it is important to
use the special black artwork versions, as use of
the Oxford blue artwork versions could result in
a half-tone grey.

Special Pantone ink, CMYK and black-only artwork
is available for all versions of the Oxford logo.

University staff can download Oxford logo artwork
files from the Downloads section of the online
branding toolkit.

NOTE
Do not print letterheads in colour on a laser or
inkjet printer as the colour of the Oxford logo will
not be correct. Please print in black using only the
specific black artwork versions of the logo.

The Oxford logo: colour
Oxford Blue

Black

 Online branding toolkit:
 www.ox.ac.uk/toolkit

Bartolomeo Stellato

St Edmund Hall
University of Oxford

A dissertation submitted for the degree of

Doctor of Philosophy

November 2017

To my parents,

Nicola and Daniela

Abstract

Many applications in engineering, computer science and economics in-
volve mixed-integer optimal control problems. Solving these problems in
real-time is a challenging task because of the explosion of integer com-
binations to evaluate. This thesis focuses on the development of new al-
gorithms for mixed-integer programming with an emphasis on optimal
control problems of fast dynamical systems with discrete controls.

The first part proposes two reformulations to reduce the computational
complexity. The first reformulation avoids integer variables altogether. By
considering a sequence of switched dynamics, we analyze the switching
time optimization problem. Even though it is a continuous smooth prob-
lem, it is non-convex and the cost function and derivatives are hard to
compute. We develop a new efficient method to compute the cost function
and its derivatives. Our technique brings up to two orders of magnitude
speedups with respect to state-of-the-art tools. The second approach re-
duces the number of integer decisions. In hybrid model predictive control
(MPC) the computational complexity grows exponentially with the hori-
zon length. Using approximate dynamic programming (ADP) we reduce
the horizon length while maintaining good control performance by ap-
proximating the tail cost offline. This approach allows, for the first time,
the application of such control techniques to fast dynamical systems with
sampling times of only a few microseconds.

The second part investigates embedded branch-and-bound algorithms
for mixed-integer quadratic programs (MIQPs). A core component of
these methods is the solution of continuous quadratic programs (QPs).
We develop OSQP, a new robust and efficient general-purpose QP solver
based on the alternating direction method of multipliers (ADMM) and
able, for the first time, to detect infeasible problems. We include OSQP
into a custom branch-and-bound algorithm suitable for embedded sys-
tems. Our extension requires only a single matrix factorization and ex-
ploits warm-starting, thereby greatly reducing the number of ADMM iter-
ations required. Numerical examples show that our algorithm solves small
to medium scale MIQPs more quickly than commercial solvers.

Acknowledgments

This wonderful journey would have never been possible without the sup-
port and encouragement of many exceptional people.

I would like to start by thanking Bart Van Parys who encouraged me
to pursue my doctorate in Oxford. I really enjoyed the time we spent
together during his visit and I am very grateful for his valuable academic
and life advices. I am incredibly happy we will meet soon after my defense!

My deepest gratitude goes to my mentor, Paul Goulart, for believing
in me from the start. His close guidance, patience and attention to details
were invaluable to me. During the biggest struggles in my research, I
could always ask him for help. With his enthusiasm he was always able
to motivate and energize me during our meetings. I really appreciated all
the times he supported me during these years. I will always remember
our video calls when it was very late at night for him in Oxford and we
had 8 hours time difference. I am also grateful for his promptness in the
moments of need. When there were urgent deadlines he always read my
papers very quickly and, yet, extremely carefully. He never commanded,
but instead he motivated me to follow my research interests with all the
freedom I needed. I am very much indebted to Paul. This dissertation and
my future career would not have been the same without him.

I am especially thankful to Stephen Boyd for hosting me at Stanford.
Visiting his group has been an enlightening and enriching experience. I feel
privileged to have had the chance to work with him so closely and to share
his contagious enthusiasm and joy at work. His passion for simplicity,
clarity and his unique style are a true inspiration for me. I am also grateful
to him for sharing his invaluable suggestions on research topics that really
matter and his passion for open-source software and open-access research.

I am furthermore grateful to Alberto Bemporad for always welcoming
me with open doors at IMT Lucca. I really enjoyed working with him
and having our very long meetings in Lucca racking our brains to solve
complex research problems.

I wish to thank the EU Marie Curie project TEMPO for the financial
support. Thanks to this funding scheme I had the unique opportunity
to pursue my doctorate without any constraint. I am grateful to Eric
Kerrigan, Tor Arne Johansen, Moritz Diehl and all the other professors

viii

in the TEMPO project for organizing all the workshops and events and
for the great feedback they gave on my work. I am also thankful to ABB
Switzerland for funding the TEMPO project and to Tobias Geyer for his
support on power electronics during my first year.

All the faculty members in the control group encouraged and sup-
ported me in different ways. I wish to thank Kostas Margellos for being
such a positive fresh spirit in the group and for his honest, helpful and
friendly career and life advices. I am also grateful to Sina Ober-Blöbaum
for our very pleasant and interesting collaboration. Big thanks go also to
Stephen Duncan for his support and for helping out in any moment of
need.

I am sincerely grateful to Goran Banjac for being my closest friend
in this amazing experience. I realized the incredible amount of time we
spent together only now that it is over. We managed to get along well after
sharing the project, the office, the flat in Oxford, the flat in Palo Alto, the
office in Stanford and also the project Stanford! I am so grateful for his
patience and support for all my problems in life and research. His honesty,
impeccable precision (also with appointment times!) and organizational
skills will always be an inspiration for me. I am sure that after such an
experience we will stay close even when living in different continents.

I would like to thank Paola D’Andrea for being such an amazing flat-
mate during my first year and for being such an understanding, caring
and irreplaceable friend. She was always there in the moments of need
despite distances and different time zones. I will deeply miss our coffees
and intense chats.

Giovanni Licitra deserves a huge thank you for being such a cheerful,
honest and humble friend. Even if we were far apart in these years, Gio-
vanni was always there, just a phone call away. I greatly enjoyed our time
together in the TEMPO meetings and our great adventures in Sicily. I
am so looking forward to meet Isabella in person!

A special thank you goes to Emilia Vanni for her warm-hearted sup-
port, especially in the stressful moments when writing up my thesis. I am
so grateful to her for the joy and the positive energy she always brings to
people and for always finding the silver lining, no matter what happens.

I am also grateful to all the incredible people in the control group
in Oxford. I would like to thank Nikitas Rontsis for being a great office

ix

mate and friend, and for sharing all the coding struggles together. Moritz
Schulze-Darup deserves the price for the greatest (and craziest) party
maker and control theorist ever! A big thank you goes to Dhruva Ra-
man, Xiaojing Chen, Mohamadreza Ahmadi, Ross Drummond, Michael
Garstka and all the other members of the control group for making it
such an enjoyable place to work.

I would like to thank the amazing people I met during my research
trips. Steven Diamond, Nicholas Moehle and Enzo Busseti made my re-
search visit at Stanford such a unique experience. I wish to thank also
Youngsuk Park for being such a great office mate and for suggesting
amazing places to visit in California. Also, Stanford visit would have never
happened without the professional and extremely efficient support from
Douglas Chaffee. Thanks a lot Doug! Many thanks also to Ugo Rosolia
and to Jacopo Guanetti for our great trip from Berkeley to the Yosemite
Park. I wish to thank also Vihang Naik for showing me around IMT Lucca
and for being such a great host. Thanks also to Miles Lubin for inviting
me to MIT, introducing me to the great Julia community and for hanging
out in Boston.

My Oxford friends were the most important part of my life during
these years. I would like to thank Jan for being such a great flatmate, for
sharing tasty brunches during the weekend and for all the startup sugges-
tions. Big thanks go to Markus Wulfmeier for our deep discussions and for
being such a fantastic beer and coffee buddy from the first day I arrived.
I thank also Felix Schupp and Shannon Christyna for organizing great
dinners and parties at their place. Many thanks also to Lina Gridvainyte,
Ben Lange, Matthias Mer, Chloe Ann for all our times together.

I enjoyed meeting all the fantastic people at St Edmund Hall. I re-
ally appreciated the effort and enthusiasm of Linde Wester and Kusal
Lokuge in organizing amazing events in the college in these years. I am
also thankful to Alex Blakes, Thomas Cosnahan, Rosin Huggins, Isabel
Wassing for making the MCR such a cozy and welcoming environment.
A big thank you goes also to Daniel Barba Cancho for all the moments
we spent together.

I would like to thank also all my Italian friends in Oxford. I am greatly
indebted to Federico Danieli for all the incredibly tasty dinners and for
being such a welcoming host in his flat. It was great to live just 50 me-

x

ters apart! Big thanks also to Noemi Picco for her support, the amazing
barbecues at her place and for the awesome dinners at St John’s College
SCR. Luca Bertinetto, Andrea Tucci, Roberto Soleti, Angela Diana, Gio-
vanna Granata, Gabriele Abbati, thank you for the great dinners, football
matches, TV shows and drinks in these years! I wish to thank also my
friends Claudio Caletti, Michele Fontana, and Silvia Abruzzi who always
supported me from Cremona. Claudio, your computer science and tech
suggestions were so helpful to me!

The employees at The Rickety Press deserve special thanks for all the
delicious brunches, the great drinks and the tasty burgers. Thank you for
creating such a fantastic atmosphere.

Many thanks also to Iris Ballestreros, Niels van Duijkeren, Robin Ver-
schueren, and all the other TEMPO fellows for all the adventures during
our trips. Our presentation skills workshop videos will always be a secret!

Last, but most importantly, I cannot express in words how grateful I
am to my parents and my family for their unconditional love and support.
I would have never been able to accomplish this without having them by
my side.

Bartolomeo Stellato
Oxford,
November 2017

Contents

1 Introduction 1
1.1 Approximations to reduce complexity 4
1.2 Exact solution methods . 6
1.3 Publications . 8

I Approximations to Reduce Complexity 11

2 Optimal Switching Times for Switched Dynamical Systems 13
2.1 Switched systems . 13
2.2 Problem statement . 16
2.3 Preliminaries . 18
2.4 Numerical solution method 22
2.5 Linear switched systems . 27
2.6 Implementation and examples 28
2.7 Conclusions . 36

3 ADP for Integer Optimal Control 37
3.1 Optimal control of hybrid linear systems 37
3.2 Dynamic programming . 39

xi

xii

3.3 Approximate dynamic programming 40
3.4 Bellman inequality . 41
3.5 Iterated Bellman inequalities 41
3.6 Semidefinite program reformulation 43

4 High-Speed Hybrid MPC for Power Electronics 45
4.1 Model predictive control in power electronics 46
4.2 Drive system case study . 48
4.3 Model predictive current control 50
4.4 Framework for performance evaluation 59
4.5 Achievable performance in steady-state 60
4.6 FPGA implementation . 62
4.7 Processor-in-the-loop tests 66
4.8 Conclusions . 68

II Exact Solution Methods 75

5 An Operator Splitting Solver for Quadratic Programs 77
5.1 Introduction . 77
5.2 Optimality conditions . 84
5.3 Solution with ADMM . 85
5.4 Problem data scaling . 92
5.5 Solution polishing . 95
5.6 Parametric programs . 97
5.7 OSQP . 98
5.8 Numerical examples . 102
5.9 Conclusions . 109

6 An MIQP Solver based on OSQP 113
6.1 Introduction . 113
6.2 Branch-and-bound solver based on OSQP 117
6.3 Exploiting the OSQP solver 122
6.4 Numerical results . 123
6.5 Conclusions . 125

xiii

7 Discussion and Outlook 129
7.1 Approximations to reduce complexity 130
7.2 Exact solution algorithms 133

Notation 137

Appendices 141

A Switching Time Optimization Proofs 143
A.1 Proof of Theorem 2.1 . 143
A.2 Proof of Proposition 2.1 . 149

B Variable-Speed Drive Control 151
B.1 Reference frames . 151
B.2 Physical model of the inverter 152
B.3 Physical model of the machine 152
B.4 Complete model of the physical system 153
B.5 Value function underestimation 154
B.6 Integer quadratic program reformulation 155

C OSQP Benchmark Problem Classes 159
C.1 Random QP . 159
C.2 Equality constrained QP . 160
C.3 Portfolio optimization . 161
C.4 Lasso . 162
C.5 Huber fitting . 162
C.6 Support vector machine . 163

References 165

1
Introduction

In recent years, there has been an explosion in computational capabilities
of modern processors and a dramatic decrease in the cost of computing
hardware. In fractions of a second, we can now solve on cheap hardware
complex decision making problems that were almost impossible to solve
just 20 years ago. These advances drove revolutions in several science end
engineering fields such as control theory, machine learning, scheduling and
finance.

Mathematical optimization is a comprehensive framework for formu-
lating and solving complex decision making problems. With these tech-
niques we can systematically compute the best decisions minimizing a
performance index or minimizing a cost while satisfying constraints. To-
gether with other branches of science and engineering, mathematical op-
timization has seen tremendous advances in the last 20 years.

There currently exist many efficient algorithms able to solve opti-
mization problems with continuous variables in a wide range of applica-
tions [137]. A popular example is model predictive control (MPC), where
the optimal control input is computed in real-time at each sampling in-

1

2 Introduction

stance. MPC has been successfully applied in both the industry and aca-
demic sectors in the past 20 years, becoming a standard framework for
optimal control. Historically, MPC was applied to slow processes with
sampling times in the order of minutes or hours because of the limited
computing resources available. In the last decade, there has been a great
reduction in computation time for continuous problems arising in linear
MPC from hours to milliseconds [178] or even microseconds [100]. We
can now apply MPC to systems with fast dynamics in robotics, signal
processing and power electronics.

The last 20 years have also seen great improvements in solving opti-
mization problems with integer variables [26, 135]. These problems arise,
for instance, when only a limited number of options or configurations
is available. Examples include power distribution, scheduling, mechani-
cal systems, portfolio investments and many others. If we consider the
speedups of algorithmic developments together with hardware improve-
ments, we can now solve medium-sized problems with mixed-integer vari-
ables 200 billion times faster than 20 years ago [22]. However, when dealing
with integer decisions, the complexity required to compute the optimal
solutions grows dramatically and is much higher than for problems with
only continuous decisions. In the worst case we have to check all the
possible integer combinations which grows exponentially in the problem
dimensions [134]. For this reason, despite the recent advances, it is still dif-
ficult to obtain optimal integer solutions within the seconds time scale for
medium-sized problems with hundreds or thousands of integer variables.
There exists no reliable solution method for mixed-integer optimization
problems for high-speed real-time applications. One example is MPC of
hybrid systems where integer inputs describe the logic governing the dy-
namics. Compared to linear MPC, we are still not able to comfortably
apply hybrid MPC to fast dynamical systems with milliseconds sampling
time. Therefore, even though we can now solve these problems much faster
than before, we still need to improve integer programming techniques to
tackle fast dynamical systems.

This thesis focuses on the development of new algorithms for mixed-
integer programming with an emphasis on optimal control problems of fast
dynamical systems. The main goal is to apply real-time optimal control
schemes to certain classes of systems with integer inputs by reducing the

3

computation time.
There are currently two main approaches to deal with integer opti-

mization problems. On the one hand, exact solution methods focus on
finding and certifying the globally optimal solution for a given problem.
If there is enough computation time and hardware available, these ap-
proaches return the optimal solution which cannot be improved. How-
ever, when the number of integer decisions is too high or when there
is not enough computing time available, exact solution methods become
prohibitive. In these cases we need to resort to approximations to reduce
the complexity, i.e., heuristics. These methods return suboptimal solu-
tions that perform very well in many practical applications. However,
in some cases the returned solution might be highly suboptimal or even
infeasible. Based on this reasoning, we need to take into account an im-
portant trade-off between the computation time available and the quality
of the solutions. Depending on the application, we construct tractable tai-
lored methods to deal with integer optimal control problems. In this case,
tractability does not mean polynomial time solvability but instead “the
ability to solve problems of realistic size in times that are appropriate for
the applications we consider” [22].

This thesis is structured in two parts. The first part deals with ap-
proximations to reduce the complexity arising from integer decisions in
optimization problems. We develop two approaches: one avoiding integer
variables and based on switching time optimization, and the other reduc-
ing the number of integer variables and based on approximate dynamic
programming (ADP). The second part investigates an algorithm for the
exact solution of mixed-integer quadratic programs (MIQPs). We first
develop a novel efficient solver for quadratic programs (QPs). Then, we
embed it into a branch-and-bound algorithm simplifying all the unneces-
sary computations. The next sections introduce the thesis topics more in
detail.

Figure 1.1 illustrates the chapters involved for each topic. The con-
tributions are ordered by the generality of the integer problems involved.
The first approach, based on switching time optimization, tackles optimal
control problems where the goal is to switch between dynamics in a pre-
defined order. The second approach extends this case to control problems
where the dynamics can be in any order that needs to be decided by the

4 Introduction

solution algorithm. The third approach, based on exact solution methods
and MIQPs, can deal with any problem of that form arising in several
application areas that are not necessarily control systems.

Generality of the integer constraints

Approach

Solution
Method

Contents

Approximations to
Reduce Complexity

Switching
Time

Optimization

Nonlinear
Programming

Chapter 2

Approximate
Dynamic

Programming

Parallel
Exhaustive
Search

Chapters 3, 4

Exact Solution
Methods

Mixed-Integer
Quadratic

Programming

OSQP-based
Branch and

Bound

Chapters 5, 6

Figure 1.1: Thesis outline in terms of generality of the integer constraints.

1.1 Approximations to reduce complexity

In this part of the thesis we focus on approximations to make the problems
tractable for the application considered. By restricting the generality of
the problem addressed, we reduce the complexity together with the com-
putation time required.

1.1.1 Switching time optimization for switched dynamical systems

Chapter 2 investigates the switching time optimization problem. Given a
fixed sequence of nonlinear dynamics, we analyze the problem of finding
the optimal times to switch between them in order to minimize a prede-
fined cost function. With this technique we can reformulate a hard integer

1.1. Approximations to reduce complexity 5

optimization problem as a continuous, smooth, non-convex optimization
problem whose locally optimal solutions are easy to find.

Recent approaches compute the optimal switching times using itera-
tive optimization methods. First-order [64] and second-order [101] algo-
rithms have been proposed in the literature to solve this problem. How-
ever, current techniques suffer from the computational complexity of the
multiple numerical integrations required to compute the cost function,
the gradient and the Hessian of the optimization problem.

In Chapter 2 we present a novel efficient technique to formulate
and solve switching time optimization problems. We develop easily com-
putable expressions for the cost function, the gradient and the Hessian,
sharing the most expensive computations. In this way, once the cost func-
tion is evaluated, there is no significant increase in complexity in com-
puting its derivatives. In the case of linear dynamics we show that our
method can be even further simplified and the computations parallelized
to greatly reduce the computation time.

We implemented our method in the Julia package SwitchTimeOpt.
This tool provides a simple interface allowing the user to easily define and
efficiently solve switching time optimization problems. SwitchTimeOpt
supports a wide variety of nonlinear solvers that can be easily inter-
changed. Numerical examples show that our method exhibits up to 100×
improvements in computation time over tailored state-of-the-art nonlinear
optimal control software tools.

1.1.2 Approximate dynamic programming for integer optimal control

Chapters 3 and 4 introduce a novel method for MPC of hybrid systems
with fast linear dynamics and integer inputs. To address the computa-
tional issues of performing the optimization over long prediction horizons,
we cast the problem into the framework of ADP [20, 21]. The infinite hori-
zon value function is approximated with a quadratic underestimator by
solving a semidefinite program (SDP) offline [29]. This allows us to shorten
the controller horizon to reduce the algorithm complexity by applying an
estimated tail cost to the last stage while maintaining good control per-
formance. Moreover, in contrast to common formulations where the input

6 Introduction

effort is reduced indirectly via penalization of the input switchings over
the controller horizon [80], in this work we augment the system dynamics
to directly estimate the switching frequency. This allows the user to easily
define the desired frequency to be tracked a priori without complicated
tuning of the cost function.

We apply our approach to a variable-speed drive system consisting of a
voltage source inverter connected to a medium-voltage induction machine.
The plant is modeled as a linear system with a switched three-phase input
with equal switching steps for all phases.

We implemented our algorithm on a small size Xilinx Zynq field-
programmable gate array (FPGA) (xc7z020) in fixed-point arithmetic.
We show via processor-in-the-loop (PIL) experiments that our method,
even with very short prediction horizons, outperforms state-of-the-art ap-
proaches [80] with much longer planning horizons in terms of current
distortion and switching frequency, while achieving computation times
under 25 µs.

1.2 Exact solution methods

In this part we focus on the solution of general MIQPs using the branch-
and-bound algorithm. The solution of QPs is an essential part of MIQPs
branch-and-bound methods. Regardless of the integer programming tech-
niques used, the majority of time needed to solve MIQPs is spent solving
individual QP subproblems. In addition, there are two important features
we must have in QP solvers for MIQP algorithms.

The first key feature is warm-starting. Even though the number of
QPs solved grows exponentially in the worst case, they are all very similar
and only a few elements in the problem data change between parent and
child nodes. Thus, the solutions are in general very close and starting the
QP solver from the solution of each parent node can greatly simplify the
number of iterations involved. To see this, consider for simplicity two QPs
with strictly convex cost and slightly different bounds. In this case, the
solutions are expected to be close, especially when few constraints are
active at the optimum. For this reason we need a QP solution algorithm
able to be easily warm-started to exploit the fact that the solutions of

1.2. Exact solution methods 7

consecutive QPs are usually close.
The second feature is infeasibility detection. Many problems in the

search tree are usually infeasible, because we alter the bounds on the
integer variables throughout the search. If a problem is infeasible, we
would like to detect it as soon as possible and to prune its child nodes to
reduce the search space.

We develop a novel efficient QP solver based on first-order methods
that is suitable for being embedded in a MIQPs solver. We then con-
struct a tailored branch-and-bound method that exploits the QP solution
algorithm to save computation time.

1.2.1 The OSQP solver

Chapter 5 describes OSQP, our novel general-purpose QP solver based
on the alternating direction method of multipliers (ADMM). OSQP is
very robust and requires no assumptions on problem data such as posi-
tive definiteness of the objective function or linear independence of the
constraints.

OSQP does not require an initial feasible solution and can detect infea-
sible problems directly from the algorithm iterates. Therefore, it provides
a very simple framework to detect infeasible problems without resorting to
Phase-I/II methods such as primal active set methods where an auxiliary
feasibility problem is solved first. This problem can be computationally
very expensive and before OSQP several approaches have been proposed
in the literature to avoid it. One example is the primal-dual active set
method implemented in qpOASES [65] where no auxiliary problem is
needed.

OSQP is based on a novel operator splitting technique that requires
the solution of a quasi-definite linear system with the same coefficient
matrix in each iteration. Our algorithm is division free once the initial
matrix factorization is carried out, making it suitable for real-time ap-
plications in embedded systems. The method also supports factorization
caching and warm-starting, making it particularly efficient when solving
parametrized problems arising in finance, control, and machine learning.
Our open-source C implementation has a small footprint, is library-free,

8 Introduction

and has been tested on many problem instances arising in a wide variety
of application areas. It also supports code generation of an embeddable
version of the solver featuring only static memory allocation. Our solver
is typically faster than interior-point methods, and sometimes much more
when factorization caching and warm-starting is used.

1.2.2 An MIQP solver based on OSQP

In Chapter 6 we extend the OSQP solver developed in Chapter 5 to the
solution of MIQPs. We present a robust branch-and-bound algorithm that
requires no dynamic memory allocation and is division free after a first
initial factorization is performed at the beginning of the search tree. We
exploit factorization caching and warm-starting techniques to reduce the
computational cost of the QP relaxations at each branch-and-bound node
and over the repeated solution of parametrized MIQPs. These problems
arise in many applications such as control, portfolio optimization and
machine learning. With a simple high-level Python implementation, we
show that our method is competitive with established commercial solvers.

1.3 Publications

The work presented in this thesis relies on the following publications. If not
otherwise specified, I am the main author of the contributions presented.

Chapter 2 is based on

• B. Stellato, S. Ober-Blöbaum, and P. Goulart. Second-order switch-
ing time optimization for switched dynamical systems. IEEE Trans-
actions on Automatic Control, 62(10):5407–5414, October 2017

• B. Stellato, S. Ober-Blöbaum, and P. Goulart. Optimal control of
switching times in switched linear systems. In IEEE Conference on
Decision and Control (CDC), pages 7228–7233, December 2016.

Chapters 3 and 4 are based on

1.3. Publications 9

• B. Stellato, T. Geyer, and P. Goulart. High-speed finite control set
model predictive control for power electronics. IEEE Transactions
on Power Electronics, 32(5):4007–4020, May 2017

• B. Stellato and P. Goulart. Real-time FPGA implementation of
direct MPC for power electronics. In IEEE Conference on Decision
and Control (CDC), pages 1471–1476, December 2016

• B. Stellato and P. Goulart. High-speed direct model predictive con-
trol for power electronics. In European Control Conference (ECC),
pages 129–134, July 2016.

Chapter 5 is based on

• B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd.
OSQP: An Operator Splitting Solver for Quadratic Programs.
ArXiv e-prints, November 2017, 1711.08013

• G. Banjac, B. Stellato, N. Moehle, P. Goulart, A. Bemporad, and
S. Boyd. Embedded code generation using the OSQP solver. In
IEEE Conference on Decision and Control (CDC) (To appear), 2017

• G. Banjac, P. Goulart, B. Stellato, and S. Boyd. Infeasibility de-
tection in the alternating direction method of multipliers for convex
optimization. SIAM Journal on Optimization (Submitted), June
2017.

This work was co-authored with Goran Banjac. We worked together the
formulation and algorithm. Afterwards, I focused on the numerical im-
plementation, the interfaces, and the extensive numerical testing. Goran
Banjac focused more on the infeasibility detection while also contributing
to the code.

Chapter 6 is based on

• B. Stellato, V. Naik, A. Bemporad, P. Goulart, and S. Boyd. Embed-
ded mixed-integer quadratic optimization using the OSQP solver.
In European Control Conference (ECC) (Submitted), 2018.

Part I

Approximations to Reduce Complexity

2
Optimal Switching Times for Switched

Dynamical Systems

2.1 Switched systems

Switched systems are a particular class of hybrid systems consisting of
several continuous subsystems where a switching law defines the active
system at each time instant. A recent survey on computational methods
for switched systems control appears in [185].

In this chapter we focus on optimal control of autonomous switched
systems where the sequence of continuous dynamics is fixed. In particu-
lar, we study the problem of computing the optimal switching instants at
which the dynamics must change in order to minimize a given cost func-
tion. This problem is usually referred to as switching time optimization.

This topic has been studied extensively in the last decade. In [153] the
authors provide a method to construct an offline mapping of the optimal
switching times for linear dynamics from the initial state of the system.
Even though this approach seems appealing at first sight, it suffers from
the high storage requirements typical for explicit control approaches [18]

13

14 Optimal Switching Times for Switched Dynamical Systems

as the dimension of the system and the number of possible switchings
increase.

More recent approaches focus on finding optimal switching times us-
ing iterative optimization methods. In [64] an expression for the gradient
of the cost function with respect to the switching times is derived for the
case of nonlinear systems. A first-order method based on Armijo step-
sizes is then adopted to find the optimal switching times. An extension
for discrete-time nonlinear systems is given in [67]. However, first-order
methods are very sensitive to the problem data and can exhibit slow con-
vergence [137]. To overcome these limitations Johnson and Murphey [101]
derived an expression for the Hessian of the cost function for nonlinear
dynamics and adopted a second-order method to compute the optimal
switching times finding significant improvements on the number of itera-
tions compared to the first-order method in [64]. However, both these first
and second-order approaches suffer from the computational complexity of
multiple numerical integrations required to solve the differential equa-
tions used to define the cost function, the gradient and the Hessian (in
the second-order case). Note that the Hessian definition in [101] requires
an additional set of integrations to be performed.

Computational effort. There has been very limited focus in the litera-
ture on the computational effort required by the switching time optimiza-
tion and the multiple integration routines. In [54] the authors present
a convergence analysis of a second-order method for switched nonlinear
systems similar to the one in [101] without considering the overall com-
putation time. In [37] the switching time optimization problem for lin-
ear time-varying dynamics is formulated so that only a set of differential
equations needs to be solved before the optimization procedure. Once the
integration is performed, the steepest descent direction can be computed
directly without solving any further differential equations. However, in [37]
the authors do not provide a closed-form expression for the Hessian and
only a steepest descent algorithm is adopted.

2.1. Switched systems 15

2.1.1 Our approach

In this work we present a novel method to solve switching time optimiza-
tion problems efficiently for linear and nonlinear dynamics. We develop
efficiently computable expressions for the cost function, the gradient and
the Hessian, exploiting shared terms in the most expensive computations.
In this way, at each iteration of the optimization algorithm there is no
significant increase in complexity in computing the gradient or the Hes-
sian once the cost function is evaluated. These easily computable expres-
sions are obtained thanks to linearizations of the system dynamics around
equally spaced grid points, and then integrated via independent matrix
exponentials. In the case of linear dynamics, our method can be greatly
simplified and the matrix exponentials usually decomposed into indepen-
dent scalar exponentials that can be parallelized to further reduce the
computation times.

Our method has been implemented in the open-source Julia pack-
age SwitchTimeOpt with a simple interface that allows the user to easily
define and solve switching time optimization problems. SwitchTimeOpt
supports a wide variety of nonlinear solvers which can be quickly inter-
changed.

We provide three examples to benchmark the performance of our
method. The first, from [37], is a system with two unstable switched
dynamics whose optimal switching times are obtained in only a few mil-
liseconds with our approach. The second is the so-called Lotka-Volterra
fishing problem [176] with nonlinear dynamics, integer control inputs and
constant steady state values to be tracked. The third is a double-tank
system that first appeared in [121] and was used in the switching time
optimization setting in [8]. In the final example we apply our algorithm to
find the optimal switching times to track a time-varying reference level of
the liquid in one of the tanks. In both the nonlinear examples our method,
which is implemented in the high-level language Julia, exhibits up to two
orders of magnitude improvements over tailored state-of-the-art nonlinear
optimal control software tools.

16 Optimal Switching Times for Switched Dynamical Systems

2.2 Problem statement

Consider a switched autonomous system switching between N modes
whose dynamics can be expressed as

ẋ(t) = fi(x(t)), ∀t ∈ [τi, τi+1), i = 0, . . . , N, (2.1)

with fi : Rnx → Rnx , ∀i. We assume the solution x(t) ∈ Rn to (2.1) to
always exist and be unique. Note that this assumption is stronger than
requiring that all the functions fi are uniformly Lipschitz continuous be-
cause of degenerate behaviors that could be introduced by the switchings.
We set the initial state as x(0) := x0.

We refer to the times τi as the switching times, and define also the
switching intervals

δi := τi+1 − τi, i = 0, . . . , N,

so that each

τi =
i−1∑
j=0

δj .

In this Chapter, we take the set of switching intervals δ := {δi}Ni=0 as
decision variables to be optimized, but occasionally use the switching
times τ := {τi}N+1

i=0 for convenience of notation. We define the final time
as Tδ :=

∑
i δi = τN+1, with initial time τ0 := 0.

Our goal is to find optimal switching intervals δ? minimizing an ob-
jective function in Bolza form, i.e.,∫ Tδ

0
x(t)TQx(t)dt︸ ︷︷ ︸
L(δ)

+x(Tδ)TEx(Tδ)︸ ︷︷ ︸
ψ(δ)

. (2.2)

The Lagrange term L penalizes the integral between 0 and Tδ of the
quadratic state penalty weighted by matrix Q ∈ Snx+ . The Mayer term
ψ penalizes the final state at time Tδ with weights defined by matrix
E ∈ Snx+ .

2.2. Problem statement 17

We include a set of constraints on the switching intervals

∆ =
{
δ ∈ RN+1

+ | 0 ≤ bi ≤ δi ≤ b̄i, i = 0, . . . , N ∧ Tδ = T
}
,

which requires all switching times to be nonnegative and the final time
Tδ to be equal to some desired final time T . In addition, in case the ith

dynamics must be active for a minimum or maximum time, we allow
lower and upper bounds bi and b̄i, respectively. If neither minimum nor
maximum constraints are imposed for interval δi, we set bi = 0 and b̄i =
∞.

The switching time optimization problem then takes the form

minimize
∫ Tδ

0 x(t)TQx(t)dt+ x(Tδ)TEx(Tδ)
subject to ẋ(t) = fi(x(t)), t ∈ [τi, τi+1), i = 0, . . . , N

x(0) = x0
δ ∈ ∆.

(P)

In some degenerate cases this problem can show non strict minima allow-
ing the optimal δi to live in intervals that are not singletons. These situa-
tions can cause numerical optimization solvers to stall and not progress in
the iterations. To enforce strict minima, many regularization techniques
could be applied. For instance, we could add a quadratic regularization
term ε‖δ‖22 with ε > 0 to the objective function so that we equally penal-
ize all the intervals. In this way, with a small ε we prefer solutions where
the time different dynamics are active for similar amount of time. For
simplicity, we exclude regularization terms from our derivations, but they
could be taken into account without a significant increase in complexity.

Switching order. Although we restrict ourselves to the case where the
switching order of the N + 1 modes is prescribed, we allow the system
dynamics to be the same for different i. If we set some δi = 0, then the ith

interval collapses and the dynamics switch directly from the (i−1)th to the
(i+1)th mode. This allows some dynamics to be bypassed and an arbitrary
switching order realized without recourse to integer optimization; see [76].
For example, given Ndyn different dynamics, one can cycle through all of

18 Optimal Switching Times for Switched Dynamical Systems

them in the same predefined ordering Ncyc times for a total of NdynNcyc
intervals and NdynNcyc−1 switching times, thereby allowing the dynamics
to be visited in arbitrary order. We illustrate the use of this approach in
the examples in Section 2.6.

Cost function. The cost function in problem (P) is non-convex in gen-
eral, but it is smooth [54] and its first and second derivatives can be
used efficiently within a nonlinear optimization method, e.g., sequential
quadratic programming (SQP) or interior-point methods to obtain locally
optimal switching times. In order to obtain an algorithm implementable
in real-time, we derive tractable formulations of the cost function, the gra-
dient and the Hessian based on linearizations of the system dynamics. We
show that this approach offers significant improvements in computational
efficiency relative to competing approaches in the literature.

2.3 Preliminaries

This section introduces the preliminary notions and definitions that is
used in the rest of the Chapter.

2.3.1 Time grid

In order to integrate the switched nonlinear dynamics (2.1), we define an
evenly spaced “background” grid of ngrid time-points from 0 to the final
time T , and hold these background grid points fixed regardless of the
choice of switching times τi. Note that, depending on the intervals δ, the
switching times τ can be in different positions relative to the background
grid while maintaining the ordering τi ≤ τi+1.

We subdivide each interval δi according to the background grid points
falling between τi and τi+1, with τ ji denoting the jth grid point after the
switching time τi. The number of such background grid points between
switching times τi and τi+1 is denoted by ni, which is itself a function of
the switching times τ . Note that we set nN+1 = 0.

2.3. Preliminaries 19

For notational convenience, we define τ0
i := τi and τni+1

i := τi+1 for
i = 0, . . . , N . We further define a partitioning of the switching intervals
such that δji is the jth subdivision of interval i, so that

δi :=
ni∑
j=0

δji and τki := τi +
k−1∑
j=0

δji , ∀k ≤ ni. (2.3)

In subsequent sections we define a number of vector and matrix quanti-
ties to be associated with the time instants τ ji , and adopt complementary
notation, e.g., the vector xji and matrix M j

i are associated with the jth

grid point after switching time τi. Likewise xni+1
i := xi+1, x

0
i := xi and

Mni+1
i := Mi+1,M

0
i := Mi.

A portion of the grid is presented in Figure 2.1 where the smaller ticks
represent the background grid points.

τ1
i τ ji τ j+1

i τniiτi τi+1
.

δi

δ0
i δji δnii

Figure 2.1: Switching times within the time grid.

2.3.2 Dynamics linearization

In order to make the computations of the cost function and its derivatives
numerically efficient, we linearize the dynamics around each time instant
of the background grid and each switching time.

For a given time instant τ ji we consider the linearized dynamics around
the state xji := x(τ ji) with j = 0, . . . , ni + 1 (to simplify the notation we
consider xi = x0

i = x(τi)) by writing

ẋ(t) ≈ fi(xji) + Jfi(x
j
i)(x(t)− xji)

= Jfi(x
j
i)x(t) +

(
fi(xji)− Jfi(x

j
i)x

j
i

) (2.4)

20 Optimal Switching Times for Switched Dynamical Systems

where

Jfi(x
j
i) = ∂fi(xji)

∂x

∣∣∣∣∣
xj
i
=x(τj

i
)

(2.5)

is the Jacobian of the ith nonlinear dynamics evaluated at xji .
We can obtain an approximate linear model by augmenting the dy-

namics with an additional constant state so that

ẋ(t) = Ajix(t), t ∈ [τ ji , τ
j+1
i), (2.6)

where
Aji =

[
Jfi(x

j
i) fi(xji)− Jfi(x

j
i)x

j
i

0 0

]
(2.7)

and x(t) is an augmented version of the previous state definition, i.e.,
x(t) := (x(t), 1).

Following the dynamics augmentation, let us define also the
augmented cost function weights Q := blkdiag(Q, 0) and E :=
blkdiag(E, 0).

2.3.3 Definitions

We now present some definitions required to develop our main result. Note
that the order of the matrix products is always from the left.

Definition 2.1 (State evolution). The matrix Φ(t, τ ji) is the state transi-
tion matrix of the linearized system from τ ji to t, and is defined as:

Φ(t, τ ji) := eA
m
l (t−τm`)

(
m−1∏
p=0

eA
p
`
δp
`

) `−1∏
q=i+1

nq∏
p=0

eA
p
qδ
p
q

 ni∏
p=j

eA
p
i
δp
i

 , (2.8)

where τ` and τm` are the last switching time and the last grid point before
t respectively.

Given a time instant τ ji and a time t ∈ R+ such that t ≥ τ ji we can
compute the state x(t) as

x(t) = Φ(t, τ ji)xji .

2.3. Preliminaries 21

Observe that if we consider the transition between two switching times
τi and τ` with τi ≤ τ`, the state transition matrix in (2.8) simplifies to

Φ(τ`, τi) =
`−1∏
q=i

nq∏
p=0

eA
p
qδ
p
q , (2.9)

which is used extensively in most of the computations in the remainder
of this Chapter.
Definition 2.2 (Cost-to-go matrices). Given the time τ ji , define matrix
P ji ∈ Snx+ as

P ji :=
∫ Tδ

τj
i

Φ(t, τ ji)TQΦ(t, τ ji)dt, (2.10)

where Φ(t, τ ji) is the state transition matrix in Definition 2.1. Define the
matrix F ji ∈ Snx+ as

F ji := Φ(Tδ, τ ji)TEΦ(Tδ, τ ji). (2.11)

Define the sum of these two matrices as

Sji := P ji + F ji , i = 0, . . . , N + 1. (2.12)

Following the convention described in Section 2.3.1, we denote P 0
i :=

Pi, F
0
i := Fi, S

0
i := Si and Pni+1

i := Pi+1, F
ni+1
i := Fi+1, S

ni+1
i := Si+1.

Definition 2.3 (Matrices C). Given matrices Si with i = 0, . . . , N +1 and
Anii with i = 0, . . . , N , define matrices Ci ∈ Snx+ as

Ci = Q+ (Anii)T Si+1 + Si+1A
ni
i , i = 0, . . . , N. (2.13)

We now define the auxiliary matrices needed for our computations.
Definition 2.4 (Auxiliary matrices). We define the matrix exponential of
the linearized system between time instants τ ji and τ j+1

i with i = 0, . . . , N
and j = 0, . . . , ni as

Eji := eA
j
i
δj
i , (2.14)

Moreover, we define the matrices M j
i ∈ Snx+ as

M j
i :=

∫ δj
i

0
eA

jT
i
ηQeA

j
i
ηdη. (2.15)

22 Optimal Switching Times for Switched Dynamical Systems

2.4 Numerical solution method

We now describe a novel iterative method to compute the optimal switch-
ing times. Our computations can be applied to any second-order algorithm
to solve switching time optimization problems.

2.4.1 Iterative algorithm

We can approximate the problem (P) as

minimize
∫ Tδ

0 x(t)TQx(t)dt+ x(Tδ)TEx(Tδ)
subject to ẋ(t) = Ajix(t), t ∈ [τ ji , τ

j+1
i),

i = 0, . . . , N, j = 0, . . . , ni
x(0) = x0
δ ∈ ∆.

(Plin)

We make use of problem (Plin) to approximate the original prob-
lem (P) at each iteration of a standard second-order nonlinear program-
ming routine such as IPOPT [177]. By linearizing the system dynamics
around the state trajectory we can directly construct problem (Plin).

In the remainder of the chapter we focus on the numerical evaluation
of the cost function J , the gradient ∇J and the Hessian HJ for prob-
lem (Plin), all of which can be computed efficiently.

We sketched a prototype algorithm in Algorithm 1. Note that in lines 3
and 4 the act of linearizing problem (P) and computing J(δ) produces
the majority of the computational work, with the benefit that the cost
function derivatives can be then computed efficiently in line 4.

2.4.2 Main result

We are now in the position to derive the cost function and its first and
second derivatives for Problem (Plin).

Theorem 2.1 (Cost function J , gradient ∇J , and Hessian HJ). The fol-
lowing holds:

2.4. Numerical solution method 23

Algorithm 1 Solve switching time optimization problem (P)
1: function SwitchingTimeOptimization
2: while Termination conditions not met do
3: Linearize problem (P)
4: Compute J(δ), ∇J(δ) and HJ(δ) for (Plin)
5: Perform one NLP solver iteration obtaining a new δ
6: end while
7: end function

(i) The cost function J is the following quadratic function of the initial
state

J(δ) = xT0 S0x0. (2.16)

(ii) The gradient ∇J of the cost function can be computed as

∇J(δ)i = ∂J(δ)
∂δi

= xTi+1Cixi+1, i = 0, . . . , N. (2.17)

(iii) The Hessian HJ of the cost function can be computed as

HJ(δ)i,` = ∂2J(δ)
∂δi∂δ`

=
{

2xT`+1C`Φ(τ`+1, τi+1)Anii xi+1 ` ≥ i
HJ(δ)`,i ` < i,

(2.18)

where i, ` = 0, . . . , N .

The proof can be found in Appendix A.1.
Regardless of the second-order optimization method employed, most

of the numerical operations needed to compute J(δ),∇J(δ) and HJ(δ) at
each iteration are shared. It is therefore necessary to perform them only
once per solver iteration.

24 Optimal Switching Times for Switched Dynamical Systems

2.4.3 State propagation and matrix exponentials

The auxiliary matrices in Definition 2.4 can be computed with the follow-
ing single matrix exponential

Zji = eG
j
i
δj
i :=

[
Zji,1 Zji,2

0 Zji,3

]
, with Zji,1, Z

j
i,2, Z

j
i,3 ∈ Rnx×nx . (2.19)

and matrices Gji being defined as

Gji :=
[
−AjTi Q

0 Aji

]
, with Gji ∈ R2nx×2nx . (2.20)

After computing Zji , matrices Eji and M j
i can be obtained as

Eji = Zji,3 and M j
i = ZjTi,3Z

j
i,2. (2.21)

For more details, see [171, Theorem 1].
In Algorithm 2 we describe the subroutine to propagate the state,

linearize the dynamics and obtain matrices Eji and M j
i . At every instant

Algorithm 2 Linearize, compute matrix exponentials and propagate
1: function LinMatExpProp
2: for i = 0, . . . , N do
3: for j = 0, . . . , ni do
4: Aji ← (2.7) . Linearize Dynamics
5: Zji ← (2.19) . Matrix Exponential
6: Eji ,M

j
i ← (2.21)

7: xj+1
i ← Eji x

j
i

8: end for
9: end for
10: return xi, i = 0, . . . , N + 1
11: return M j

i , E
j
i , j = 0, . . . , ni i = 0, . . . , N

12: end function

τ ji the dynamics are linearized, matrices Eji ,M
j
i are computed and the

state xji is propagated. Note that as we described in Section 2.3.1, we
consider x0

i := xi and xni+1
i := xi+1.

2.4. Numerical solution method 25

Computing matrix exponentials. There are several methods to com-
pute the matrix exponentials as discussed in [127] and [128]. In our work
we use “Method 3” in [128, Section 3], being the scaling and squaring
method explained in detail in [94] which is in the main linear algebra li-
brary of the Julia language. The scaling and squaring method is the most
common method used for computing the matrix exponential because of its
efficiency and precision. However, in the case of linear dynamics discussed
in Section 2.5, the matrices Aji are always constant and many operations
can be precomputed increasing the speed of the algorithm.

Exponential integrators. The matrix exponentials employed in this sec-
tion are an implementation of the first-order forward Euler exponential
integrator [95]. Exponential integrators perform well in many cases of stiff
systems. However, most common numerical methods for exponential inte-
gration reduce the operations required by computing directly the product
of a matrix exponential and a vector. In our case we not only need to
propagate the dynamics, but also to compute the cost function integral.
Thus, we need to compute the matrix exponentials Zji which are then
used to compute Eji and M j

i from (2.19).

2.4.4 State Transition Matrices

From Theorem 2.1 we need to compute the state transition matrices be-
tween the switching instants. They can be computed recursively using
Definition 2.1 which, combined with the definition of the matrix expo-
nentials in (2.14), can be written as

Φ(τ`, τi) =
`−1∏
q=i

nq∏
p=0
Epq . (2.22)

Note that we need to compute the state transition matrices only for all
` ≥ i so that the transition goes forward in time.

26 Optimal Switching Times for Switched Dynamical Systems

2.4.5 Matrices S

To obtain the cost function and its first and second derivatives we need
to compute the matrices Si. Given the matrices Eji and M j

i , the matrices
Si can be obtained using the following result:

Proposition 2.1 (S recursion). Matrix Sji with i = 0, . . . , N + 1 and j =
0, . . . , ni satisfy the recursion

SN = E (2.23)
Sji = M j

i + EjTi Sj+1
i Eji . (2.24)

We describe the proof in Appendix A.2. Note that we defined S0
i := Si

and Sni+1
i := Si+1 as discussed in Section 2.3.1.

2.4.6 Complete algorithm to compute J(δ),∇J(δ) and HJ (δ)

We now outline the complete algorithm to linearize problem (P) and
compute the cost function, the gradient and the Hessian of (Plin) with
respect to the switching intervals in Algorithm 3.

Algorithm 3 Compute J(δ),∇J(δ) and HJ(δ)
1: function ComputeCostFunctionAndDerivatives

Shared Precomputations:
2: xi, Eji ,M

j
i ← LinMatExpProp . Algorithm 2

3: Si ← Compute S . Proposition 2.1
4: Ci ← (2.13) . Definition 2.3
5: Φ(τl, τi)← Compute Φ . (2.22)

Compute J(δ),∇J(δ) and HJ(δ) . Theorem 2.1
6: J(δ)← (2.16)
7: ∇J(δ)← (2.17)
8: HJ(δ)← (2.18)
9: end function

After performing the shared precomputations, we can compute the
cost function and its derivatives using Theorem 2.1, with no significant

2.5. Linear switched systems 27

increase in computation to obtain also the Hessian in order to apply a
second-order method.

2.5 Linear switched systems

When the system has linear switched dynamics of the form
ẋ(t) = Aix(t), t ∈ [τi, τi+1), i = 0, . . . , N (2.25)

the computations can be greatly simplified. In Algorithm 1 there is no
need to resort to an auxiliary problem with linearized dynamics. In this
case the main result in Theorem 2.1 applies directly to the cost function
and derivatives of the original problem (P).

There is no need for a linearization grid when dealing with linear sys-
tems. Thus, we simplify all the results for nonlinear dynamics by removing
the indices j by setting ni = 0 with i = 0, . . . , N + 1.

Since the dynamics matrices do not change during the optimization,
we precompute the matrices in Gi = G0

i in (2.19) offline. In addition, if
some of the Gi are diagonalizable, they can be factorized offline as

Gi = YiΛiY −1
i , i = 0, . . . , N, (2.26)

where Λi are the diagonal matrices of eigenvalues and Yi are the nonsin-
gular matrices of right eigenvectors. The matrix exponentials (2.19) can
then be computed online as simple scalar exponentials of the diagonal
elements of Λi

Zi = Yie
ΛiδiY −1

i , i = 0, . . . , N, (2.27)
which corresponds to “Method 14” in [127, Section 6] and [128]. Matrices
Yi and Y −1

i can be precomputed offline. Note that the scalar exponen-
tials are independent and can be computed in parallel to minimize the
computation times. If Gi are not diagonalizable, we compute the matrix
exponentials as in the nonlinear system case with the scaling and squaring
method [127, Section 3].

Further improvements in computational efficiency can be obtained in
the case of linear dynamics by executing the main for loop in Algorithm 2
in parallel since there is no need to propagate the state and iteratively
linearize the system.

28 Optimal Switching Times for Switched Dynamical Systems

2.6 Implementation and examples

All algorithms and examples described in this Chapter have been imple-
mented in the open-source package SwitchTimeOpt in the Julia language,
and are publicly available at

https://github.com/oxfordcontrol/SwitchTimeOpt.jl

This package allows the user to easily define and efficiently solve
switching time optimization problems for linear and nonlinear systems.
SwitchTimeOpt supports a wide variety of nonlinear solvers through the
MathProgBase interface including IPOPT [177] or KNITRO [36].

For complete documentation of the configurable options for defining
problem (P) and the package functionalities we refer the reader to the
project website.

For each of the examples described in this section, we interfaced
SwitchTimeOpt with the IPOPT solver [177] on a late 2013 Macbook
Pro with Intel Core i7 and 16GB of RAM. All the examples are initial-
ized with τi equally spaced between between 0 and T . All the examples
are solved with the default IPOPT options.

2.6.1 Unstable switched dynamics

Consider the switched system from [37] described by the two unstable
dynamics

A1 =
[
−1 0
1 2

]
and A2 =

[
1 1
1 −2

]
. (2.28)

Note that A1 and A2 have no common eigenvectors. The system transi-
tions happen N = 5 times between 0 and T = 1 according to the mode
sequence {1, 2, 1, 2, 1, 2}. The cost function matrices are Q = I and E = 0.
The approach converges to precision 10−8 in roughly 3.5 ms producing the
optimal switching times

τ? = (0.100, 0.297, 0.433, 0.642, 0.767)

which correspond to the same solution obtained in [37]. However, no tim-
ing is reported in that work.

https://github.com/oxfordcontrol/SwitchTimeOpt.jl

2.6. Implementation and examples 29

N = 5 # Number of switching times

System dynamics
A = zeros (nx , nx , N+1)
A[: ,: ,1] = [-1 0; 1 2]
A[: ,: ,2] = [1 1; 1 -2]
for i = 3:N+1

A[:,:,i] = A[:,:, mod(i+1 ,2) +1]
end

m = stoproblem (x0 , A) # Define problem
solve! (m) # Solve problem

Obtain results and timings
tauopt = gettau (m)
Jopt = getobjval (m)
soltime = getsoltime (m)

Listing 2.1: SwitchTimeOpt code for the linear example.

To show the implementation ease of our software, we report in List-
ing 2.1 the code needed to produce this example.

2.6.2 Lotka-Volterra type fishing problem

Problem description. The Lotka-Volterra fishing problem has been
studied for almost a century following D’Ancona and Volterra’s observa-
tion of an unexpected decrease in fishing quotas after World War I [176].
This system has been analyzed from an integer optimal control point of
view in [150] and included in a library of standard integer optimal con-
trol benchmark problems for nonlinear systems in [149]. Lotka-Volterra
systems possess the nonlinear dynamics

ẋ(t) =
[
ẋ1(t)
ẋ2(t)

]
=
[
x1(t)− x1(t)x2(t)− c1x1(t)u(t)
−x2(t) + x1(t)x2(t)− c2x2(t)u(t)

]
,

defining the behavior of the biomass of the prey x1(t), assumed to grow
exponentially, and the predator x2(t), assumed to decrease exponentially.
In addition, there is a coupling term describing the interaction of the

30 Optimal Switching Times for Switched Dynamical Systems

biomasses when the predator eats the prey. The control action is the
binary variable u(t) ∈ {0, 1} modeling the decision to fish u(t) = 1 or not
to fish u(t) = 0 at time t. We choose c1 = 0.4 and c2 = 0.2 defining the
number of prey and predators caught when fishing occurs.

When no changes in the control action occur, i.e., we are either never
fishing or always fishing, the system shows an oscillating behavior which
can lead one of the biomasses to disappear [150], destroying the ecosys-
tem. The goal is to responsibly fish in order to bring both the biomasses
from an initial value of x0 = (0.5, 0.7) to the steady state value (1, 1)
within the time T = 12. In other words, the optimal control problem is
a tracking problem where we penalize the deviations from the reference
values xr(t) = (1, 1) by deciding when to start and stop fishing.

Given an integer input sequence {ui}Ni=0, ui ∈ {0, 1} and N switching
times τi, the nonlinear dynamics can be described as a switched system
of the form

ẋ(t) = fi(x(t)) =
[
x1(t)− x1(t)x2(t)− c1x1(t)ui
−x2(t) + x1(t)x2(t)− c2x2(t)ui

]
,

with t ∈ [τi, τi+1), i = 0, . . . , N .
The complete optimal control problem can be written as

minimize
∫ Tδ

0 ‖x(t)− xr(t)‖22dt
subject to ẋ(t) = fi(x(t)), t ∈ [τi, τi+1),

i = 0, . . . , N
x(0) = x0
δ ∈ ∆.

(2.29)

We can easily write this problem into the state-regulation form (P) by
augmenting the state with xr(t) with ẋr(t) = 0 and minimizing the devi-
ations between x(t) and xr(t).

We consider a sequence of N = 8 switchings between the two possible
input values {ui}Ni=0 = {0, 1, 0, 1, 0, 1, 0, 1, 0} giving a total of 9 dynamics.

Numerical results. We run the algorithm for 20 iterations for increasing
number of fixed-grid points 100, 150, 200 and 250. The optimal switching

2.6. Implementation and examples 31

times for ngrid = 200 are

τ? = (2.446, 4.150, 4.533, 4.799, 5.436, 5.616, 6.969, 7.033), (2.30)

and the state behavior is displayed in Figure 2.2. The linearized system is
also plotted as a dot-dashed green line showing an almost indistinguish-
able curve.

0 2 4 6 8 10 12
0

1

x
1

0 2 4 6 8 10 12
0

1

x
2

0 2 4 6 8 10 12

Time [s]

0

1

u

Figure 2.2: Fishing problem. States and input behaviors at the optimal switching
times τ?. The states of the simulated nonlinear system (blue line) and the linearized
system (dot-dashed green line) show a very close match.

The complete results are shown in Table 2.1. The system is simulated
at the optimal intervals δ? with an ode45 integrator obtaining the cost
function value Jode45(δ?) and with the grid linearizations obtaining J(δ?)
– their values converge as the number of grid points increases. The latter
can be seen from the value of ∆J(δ?) = ‖Jode45(δ?)−J(δ∗)‖/‖Jode45(δ?)‖
which decreases as the grid becomes finer. The number of cost function
evaluations nJ,eval and the computation time are also shown in Table 2.1.

32 Optimal Switching Times for Switched Dynamical Systems

Table 2.1: Results for Lotka-Volterra fishing problem after 20 iterations.

ngrid Jode45(δ?) J(δ?) ∆J [%] nJ,eval Time [s]

100 1.3500 1.3508 0.065 177 0.65
150 1.3454 1.3459 0.033 56 0.27
200 1.3456 1.3459 0.016 51 0.29
250 1.3454 1.3455 0.010 54 0.38

For the solver IPOPT, increasing the number of grid points does not
necessarily mean a higher computation time, because the latter is strictly
related to the number of cost function evaluations which varies depending
on the line search steps. We notice that, as the grid becomes finer, i.e.,
from ngrid = 100 to 150, the linear approximation is more precise and the
number of line search steps required is lower.

Our results are very close to the solutions in [150] which are obtained
with multiple shooting approach discretizing the problem a priori in 60
time instants leading to a mixed-integer optimization problem with 260

possible input combinations. In [150] the authors deal with the required
computational complexity by applying several heuristics. Their best cost
function value is 1.3451 and is obtained after solving the integer optimal
control problem, applying a sum-up-rounding heuristic defined in [150]
as “Rounding 2” and using the result to solve a switching time opti-
mization problem with multiple shooting. Even though no timings are
provided in [150], timing benchmarks for the multiple shooting approach
applied to this problem are provided in the report [148, Section 5.5] where
the execution times are approximately 10 times slower than the ones ob-
tained in this work. Note that the implementations in [150] and [148] use
the software package MUSCOD-II [96] which is an optimized C++ im-
plementation of the multiple shooting methods, while our approach has
been implemented on the high-level language Julia.

2.6. Implementation and examples 33

2.6.3 Double-tank system

Problem description. The problem of controlling two interconnected
tanks using hybrid control appeared in [121]. The authors of [8] applied
switching time optimization to obtain the optimal inputs. This example
has also been used in [174] and [41] for relaxations in switched control
systems. The plant is shown in Figure 2.3.

Figure 2.3: Double tank system.

We can write the system dynamics in the form

ẋ(t) =
[
ẋ1(t)
ẋ2(t)

]
=
[
−
√
x1(t) + u(t)√

x1(t)−
√
x2(t)

]
, (2.31)

where x1 and x2 are the fluid levels in the upper and lower tanks re-
spectively. The control action u(t) is the flow into the upper tank which
is linked to the valve opening. We assume the input to be either umin

34 Optimal Switching Times for Switched Dynamical Systems

or umax. The goal of the control problem is to track the reference level
xr(t) = 3− 0.05t with the second tank (the tank is slowly emptying) over
the time window from 0 to T . The initial state is x0 = (2, 2).

The optimal switching times problem has the same form as (2.29),
but in this case the reference varies over time. We can bring the problem
into state-regulation form by augmenting the state with xr(t) such that
ẋr(t) = −0.05 and xr(0) = 3 and minimizing deviations between x2(t)
and xr(t).

Numerical results. We run the algorithm for 15 iterations for grid points
10, 30, 50 and 100. The optimal switching times for ngrid = 10 are

τ? = (0.0, 4.18, 4.92, 4.93, 5.57, 6.12, 6.48, 6.9,
7.26, 7.67, 8.04, 8.43, 8.81, 9.19, 9.56).

(2.32)

The behavior of the water levels is simulated with an ode45 integrator
and displayed together with the valve opening in Figure 2.4. The linearized
system states’ behavior is plotted as a dot-dashed green line which coin-
cides with the result from the nonlinear integrator. The dotted black line
in the second plot represents the reference water level to be tracked.

The complete results are shown in Table 2.2. The nonlinear sys-
tem is simulated at the optimal intervals δ? obtaining the cost function
Jode45(δ?) and with the grid linearizations giving J(δ?). The normalized
absolute value of their difference tends to 0 as the number of grid points
increases. Even if the number of objective function evaluations is not
monotonically increasing in the number of fixed grid points, we see an
increasing execution time due to the required computations.

Although [8] does not report computation times, in [174, Section 5.2]
the authors report execution times on the order of 30 s on an Intel Xeon,
12 core, 3.47 GHz, 92 GB RAM. Our approach is approximately 200 to
550 times faster on a standard laptop. Moreover, the problem described
here is slightly more general since the reference is time-varying.

2.6. Implementation and examples 35

0 2 4 6 8 10

2

3

x
1

0 2 4 6 8 10

2

3

x
2

0 2 4 6 8 10

Time [s]

umin

umax

u

Figure 2.4: Double-tank system. States and input behaviors at the optimal switching
times τ?. The states of the simulated nonlinear system (blue line) and the linearized
system (dot-dashed green line) show a very close match. The dotted black line in the
second plot defines the reference to be tracked.

Table 2.2: Results for Double-tank problem after 15 iterations.

ngrid Jode45(δ?) J(δ?) ∆J [%] nJ,eval Time [s]

10 1.8595 1.8495 0.537 39 0.05
30 1.8582 1.8573 0.049 39 0.09
50 1.8582 1.8578 0.021 49 0.11
100 1.8582 1.8580 0.010 33 0.12

36 Optimal Switching Times for Switched Dynamical Systems

2.7 Conclusions

We presented a novel method for computing the optimal switching times
for linear and nonlinear switched systems. By reformulating the problem
with the switching intervals as optimization variables, we derived effi-
ciently computable expressions for the cost function, the gradient and the
Hessian which share the most expensive computations. At each iteration
of the optimization algorithm, once the cost function value is obtained,
there is no significant increase in complexity in computing the gradient
and the Hessian. In addition, we showed that in the case of linear dynam-
ics many operations can be performed offline and many online operations
parallelized greatly reducing the computation times.

We implemented our method in a new open-source Julia package
SwitchTimeOpt which allows the user to quickly define and solve optimal
switching time problems. An example with linear dynamics showed that
our method can solve switching time optimization problems in millisecond
time scales. We also showed with two nonlinear dynamics examples that
our high-level Julia implementation can solve these problems with up to
two orders of magnitude improvements over state-of-the-art approaches.

3
ADP for Integer Optimal Control

The goal of this chapter is to compute a value function approximation for
infinite horizon integer optimal control problems. By exploiting the results
from [179] focusing on linear systems with continuous inputs, we formu-
late the value function approximation problem as a semidefinite program
tailored to our specific class of linear systems with integer inputs. In Chap-
ter 4 we will apply the results of this Chapter to reduce the complexity
of integer optimal control problems arising in power electronics.

3.1 Optimal control of hybrid linear systems

Consider a discrete-time linear time-invariant (LTI) dynamical system
with dynamics

x(k + 1) = Ax(k) +Bu(k), k = 0, 1, . . . ,

37

38 ADP for Integer Optimal Control

where x(k) ∈ Rn is the state and u(k) ∈ Zm is the integer input. We
consider state feedback control policies [20] of the form

u(k) = φ(x(k)), k = 0, 1, . . . ,

where φ : X → U is the control policy.
The optimal control problem consists of choosing u(k) = φ(x(k)) to

minimize the infinite horizon discounted cost

Jφ =
∞∑
k=0

γk`(x(k), u(k)),

where ` : Rn ×Rm → R ∪ {+∞} is the stage cost and γ ∈ (0, 1) is the
discount factor. We denote the optimal cost by J?, i.e., the infimum of
Jφ over all policies φ.

Infinite values of ` encode the state and input constraints,

(x, u) ∈ X × U = {(x, u) | `(x, u) <∞} ,

where X ∈ Rn are the state constraints and U ∈ Zm are the input
constraints.

In the rest of this Chapter we assume no constraints on the state, i.e.,
X = Rn and integer control sets with finite cardinality K. Moreover, we
assume a stage cost of the form

`(z, v) = zTQz + lv, (3.1)

where Q ∈ Sn+ and lv ∈ R. The input cost lv can be seen as the cost of
choosing the input v. We chose this class of systems and this cost because
it both simplifies the derivations and will come into play in Chapter 4.
Note that state constraints can be included by introducing additional
convex constraints in the resulting optimization problem to estimate the
value function [179, Section 6].

3.2. Dynamic programming 39

3.2 Dynamic programming

Let V ? be the value function of the optimal control problem, V ? : X →
R ∪ {∞}, given by

V ?(z) = inf
u

{ ∞∑
k=0

γk`(x(k), u(k))
}
,

subject to the dynamics (3.1) and x(0) = z.
The main idea behind dynamic programming is that the function V ?

is the unique solution to the equation

V ?(z) = inf
u
{`(z, u) + γV ? (Az +Bu)} ∀z ∈ X ,

known as the Bellman equation. The value V ? is the cost of applying
the optimal policy when the initial state is z. The right-hand side can be
written more compactly as

V ? = T V ?,

where T is usually referred to as the Bellman operator

(T q)(z) := inf
u
{`(z, u) + γq (Az +Bu)} ∀z ∈ X ,

for any q : X → R. Once V ? is known, the optimal control policy for our
problem starting at state z can be found as

φ?(z) = argmin
u
{`(z, u) + γV ? (Az +Bu)} ,

for all z ∈ X .

3.2.1 Properties of the Bellman operator

There are several useful properties of the Bellman operator T [20, 21, 179].

40 ADP for Integer Optimal Control

Monotonicity. For functions f, g : X → R, we have

f ≤ g =⇒ T f ≤ T g,

where we consider the inequality elementwise, i.e., f(x) ≤ g(x), ∀x ∈ X .

Value iteration convergence. For any function f : X → R, we have
that

V ?(x) = lim
k→∞

(T kf)(x), ∀x ∈ X .

This means that by applying iteratively the Bellman operator to any func-
tion, we converge pointwise to the value function. The methods computing
V ? using this technique are called value iteration.

3.3 Approximate dynamic programming

Unfortunately, solutions to the Bellman equation can only be computed
analytically in a limited number of special cases, e.g., when the state and
inputs have small dimensions or when the system is linear and uncon-
strained and the cost function is quadratic [103]. For more complicated
problems, dynamic programming is limited by the so-called curse of di-
mensionality; storage and computation requirements tend to grow expo-
nentially with the problem dimensions. In the case of integer inputs, it is
intractable to compute the optimal infinite horizon cost and policy, hence
systematic methods for approximating the optimal value function offline
are needed.

Approximate dynamic programming (ADP) [21] consists of various
techniques for estimating V ? using knowledge from the system dynamics,
fitted data through machine learning or iterative learning through simu-
lations. A common alternative, is to replace the value function with an
approximation V̂ [21]. The resulting policy can be written as

φ̂(z) = argmin
u

{
`(z, u) + γV̂ (Az +Bu)

}
,

3.4. Bellman inequality 41

for all z ∈ X . We describe φ̂ as an ADP policy. The goal of ADP is to find
a policy with close to optimal performance that can be easily evaluated.

3.4 Bellman inequality

In this section show how to compute an underestimator of the true value
function by first relaxing the Bellman equality and then restricting the
approximated function to a specific family of functions.

We follow the approach developed in [50] and [179] where the authors
relax the Bellman equation into an inequality

V̂ (z) ≤ inf
u

{
`(z, u) + γV̂ (Az +Bu)

}
, ∀z ∈ X , (3.2)

or, equivalently, using the Bellman operator

V̂ ≤ T V̂ . (3.3)

The set of functions V̂ that satisfy the Bellman inequality are un-
derestimators of the optimal value function V ?. This happens because, if
V̂ satisfies (3.3), then by the monotonicity of the operator T and value
iteration convergence from Section 3.2.1 we can write

V̂ ≤ T V̂ ≤ T
(
T V̂

)
≤ · · · ≤ lim

i→∞
T iV̂ = V ?.

The Bellman inequality (3.3) is therefore a sufficient condition for under-
estimating V ∗.

3.5 Iterated Bellman inequalities

In [179] the authors show that the conservatism of the approximation can
be reduced by iterating (3.2). The iterated Bellman inequality is defined
as

V̂ ≤ T M V̂ ,

42 ADP for Integer Optimal Control

where M > 1 is an integer defining the number of iterations. Satisfaction
of this inequality is equivalent to the existence of functions V̂i such that

V̂ ≤ T V̂1, V̂1 ≤ T V̂2, . . . V̂M−1 ≤ T V̂ .

By defining V̂0 := V̂M := V̂ , we can rewrite the iterated inequality as

V̂i−1 ≤ T V̂i, i = 1, . . . ,M, (3.4)

where V̂i are the iterates of the value function.
To make the problem tractable, we restrict the iterates to the finite-

dimensional subspace spanned by the basis functions V (j) as defined
in [50],[179], i.e.,

V̂i =
K∑
j=1

αijV
(j), i = 0, . . . ,M − 1. (3.5)

Given the inequalities (3.4), we can write the problem of finding the
best value function underestimator as

maximize
∫
X V̂ (z)c(dz)

subject to V̂i−1(z) ≤ infu{`(z, u) + γV̂i(Az +Bu)},
∀z ∈ X , i = 1, . . . ,M,

V̂0 = V̂M = V̂ ,

(3.6)

where c is a non-negative measure over the state space. On the chosen
subspace (3.5), the iterated inequalities are convex in the coefficients αij .
To see this, note that the left-hand side is affine in αij . Moreover, for a
fixed u the argument in the infimum in the right-hand side is affine in αij
while the pointwise infimum of affine functions is concave.

The solution to (3.6) is the function spanned by the chosen basis that
maximizes the c-weighted 1-norm defined in the cost function while sat-
isfying the iterated Bellman inequality [50, Lemma 1]. Hence, c can be
regarded as a distribution giving more importance to regions of the state
space where we would like a better approximation.

3.6. Semidefinite program reformulation 43

3.6 Semidefinite program reformulation

Following the approach in [179], we make use of quadratic candidate func-
tions of the form

V̂i(z) = zTPiz + 2qTi z + ri, i = 0, . . . ,M, (3.7)

where Pi ∈ Sn+, qi ∈ Rn, ri ∈ R. This choice is motivated by the fact that
in our case the optimal value function is piecewise quadratic or, more
specifically, the pointwise minimum of quadratic functions [184]. Hence,
we expect a quadratic approximator to have a shape that is compatible
with the original value function.

If we define µ ∈ Rn and Σ ∈ Sn+ as the mean and covariance of
measure c respectively, by using quadratic candidate functions the cost of
problem (3.6) can be written as∫

X
V̂ (z)c(dz) = tr(P0Σ) + 2qT0 µ+ r0.

We now focus on rewriting the constraint in (3.6) as a linear matrix
inequality (LMI) [29]. We first remove the infimum on the right-hand side
by imposing the constraint for every admissible u ∈ U and obtain

V̂i−1 ≤ `(z, u) + γV̂i(Az +Bu), ∀z ∈ X ,∀u ∈ U , i = 1, . . . ,M.

We can then rewrite the constraint as[
z

1

]T
Mi(u)

[
z

1

]
≥ 0, ∀z ∈ X ,∀u ∈ U , i = 1, . . . ,M, (3.8)

where
Mi(u) = L+ γGi(u)− Si−1 ∈ Sn. (3.9)

The matrices defining the quadratic form are

Si−1 :=
[
Pi−1 qi−1
qTi−1 ri−1

]
, L :=

[
Q 0n×1

0Tn×1 0

]
Gi(u) :=

[
Ψ(i) Φ(i)(u)

Φ(i)(u)T Γ(i)(u)

]
,

44 ADP for Integer Optimal Control

with

Ψ(i) := ATPi−1A,

Φ(i)(u) := ATPiBu+AT qi,

Γ(i)(u) := uTBTPiBu+ 2qTi Bu+ ri.

Using the non-negativity condition of quadratic forms [172], it is easy
to see that (3.8) holds if and only if Mi(u) is positive semidefinite. Hence,
we can rewrite problem (3.6) as the following semidefinite program (SDP)

maximize tr(P0Σ) + 2qT0 µ+ r0
subject to Mi(u) � 0, ∀u ∈ U , i = 1, . . . ,M,

V̂0 = V̂M = V̂ , Pi ∈ S+,

(3.10)

which can be solved efficiently using a standard SDP solver, e.g.,
MOSEK [130]. Once the solution is obtained, we can define our value
function underestimator as

V̂ (z) := zTP0z + 2qT0 z + r0. (3.11)

We will use this approach in Chapter 4 when reducing the complexity of
integer optimal control problems with fast dynamics.

4
High-Speed Hybrid MPC for Power Electronics

Among the control strategies adopted in power electronics, model predic-
tive control (MPC) [143] has recently gained popularity due to its various
advantages [45]. MPC has been shown to outperform traditional control
methods mainly because of its ease in handling time-domain constraint
specifications, which can be imposed by formulating the control problem
as a constrained optimization problem. Due to its structure, MPC can be
applied to a variety of power electronics topologies and operating condi-
tions providing a higher degree of flexibility than traditional approaches.

With the recent advances in convex optimization techniques [137], it
has been possible to apply MPC to very fast constrained linear systems
with continuous inputs by solving convex quadratic optimization problems
within microseconds [100]. However, when dealing with nonlinear systems
or with integer inputs, the optimal control problems are no longer convex
and it is harder to find optimal solutions. For this reason, there are still
two orders of magnitude difference in achievable computation time com-
pared to results obtained for linear systems [100] and further advances are
required to apply these methods to very fast power electronics systems.

45

46 High-Speed Hybrid MPC for Power Electronics

4.1 Model predictive control in power electronics

In power electronics, many conventional control strategies applied in in-
dustry are based on proportional-integral controllers (PIs) providing con-
tinuous input signals to a modulator that manages conversion to discrete
switch positions. Direct MPC [78] instead combines the current control
and the modulation problem into a single computational problem, pro-
viding a powerful alternative to conventional PI controllers. With direct
MPC, the manipulated variables are the switch positions, which lie in a
discrete and finite set, giving rise to a switched system. Therefore, this
approach does not require a modulator and is often referred to as finite
control set MPC.

Since the manipulated variables are restricted to be integer-valued, the
optimization problem underlying direct MPC is provably NP-hard [23].
In power electronics these optimization problems are often solved by com-
plete enumeration of all the possible solutions, which grow exponentially
with the prediction horizon [142]. Since long horizons are required to en-
sure stability and good closed-loop performance [129], direct MPC quickly
becomes intractable for real-time applications. As a consequence, in cases
when reference tracking of the converter currents is considered, the con-
troller horizon is often restricted to one [45]. Despite attempts to overcome
the computational burden of integer programs in power electronics [107],
the problem of implementing these algorithms on embedded systems re-
mains open.

4.1.1 Sphere decoding

A recent technique introduced in [80] and benchmarked in [81] reduces
the computational burden of direct MPC when increasing the prediction
horizon. In that work the optimization problem was formulated as an
integer least-squares (ILS) problem and solved using a tailored branch-
and-bound algorithm, described as sphere decoding [93], generating the
optimal switching sequence at each time step. Although this approach
appears promising relative to previous work, the computation time re-
quired to perform the sphere decoding algorithm for long horizons (e.g.,

4.1. Model predictive control in power electronics 47

N = 10), is still far slower than the sampling time typically required, i.e.,
Ts = 25 µs.

Some approaches have been studied to improve the computational effi-
ciency of the sphere decoding algorithm. In particular, in [105] a method
based on a lattice reduction algorithm decreased the average computa-
tional burden of the sphere decoding. However, the worst case complexity
of this new reformulation is still exponential in the horizon length. In [106],
heuristic search strategies for the sphere decoding algorithm were studied
at the expense of suboptimal control performance. Even though a floating
point complexity analysis of the algorithms is presented in these works,
no execution times and no details about fixed-point implementation are
provided. Furthermore, there currently exists no embedded implementa-
tion of a direct MPC algorithm for current control achieving comparable
performance to formulations with long prediction horizons.

4.1.2 Our approach

In this chapter we introduce a different method to deal with the di-
rect MPC problem. In contrast to common formulations [114] where the
switching frequency is controlled indirectly via penalization of the input
switches over the controller horizon, in this work the system dynamics are
augmented to directly estimate the switching frequency. Our approach al-
lows the designer to set the desired switching frequency a priori by penal-
izing its deviations from this estimate. Thus, the cost function tuning can
be performed more easily than with the approach in [80] and [81], where a
tuning parameter spans the whole frequency range with no intuitive con-
nection to the desired frequency. To address the computational issues of
long prediction horizons, we formulate the tracking problem as a regula-
tion one by augmenting the state dynamics and cast it in the framework of
approximate dynamic programming (ADP) [21] introduced in Chapter 3.
The infinite horizon value function is approximated using the approach
in [50] and [179] by solving an semidefinite program (SDP) [172] offline.
This enables us to shorten the controller horizon by applying the esti-
mated tail cost to the last stage to maintain good control performance.
In [24] the authors applied a similar approach to stochastic systems with

48 High-Speed Hybrid MPC for Power Electronics

continuous inputs, describing the control law as the “iterated greedy pol-
icy”.

As a case study, we applied our method to a variable-speed drive
system consisting of a three-level neutral point clamped voltage source
inverter connected to a medium-voltage induction machine. The plant is
modeled as a linear system with a switched three-phase input with equal
switching steps for all phases.

Closed loop simulations in MATLAB in steady state operation showed
that our method, with very short prediction horizons, gives better per-
formance than the approach in [80] and [81] with much longer planning
horizons.

We have implemented our algorithm on a small size Xilinx Zynq
FPGA (xc7z020) in fixed-point arithmetic and verified its performance
with processor-in-the-loop (PIL) tests of both steady-state and transient
performance. The results achieve almost identical performance to closed-
loop simulations and very fast computation times, allowing us to comfort-
ably run our controller within the 25 µs sampling time.

Coordinates and per-unit system. In this work we use normalized quan-
tities by adopting the per-unit system (pu). The time scale is also nor-
malized using the base angular velocity ωb that in this case is 2π50 rad/s,
i.e., one time unit in pu corresponds to 1/ωb s.

In this chapter we make use of vectors in the three-phase system (abc)
and in the stationary orthogonal coordinates (αβ). If not specified, vectors
are in the orthogonal coordinates αβ reference frame. For more details
see B.1.

4.2 Drive system case study

We consider a variable-speed drive system as shown in Figure 4.1, consist-
ing of a three-level neutral point clamped voltage source inverter driving
a medium-voltage induction machine. The total dc-link voltage Vdc is as-
sumed constant and the neutral point potential N fixed.

4.2. Drive system case study 49GEYER AND QUEVEDO: MULTISTEP FINITE CONTROL SET MPC FOR POWER ELECTRONICS 6837

cost is chosen as the optimal one. Enumeration is sometimes
perceived as an “easy” task; this is a misconception since enu-
meration is applicable only to MPC problems featuring a limited
number of switching sequences. Exhaustive enumeration is not
practical for problems with thousands of sequences, which arise
from MPC formulations with prediction horizons of four or
more.

Motivated by the observations made previously, this paper ex-
amines the use of prediction horizons longer than one for direct
MPC with reference tracking. To address computational issues,
our work exploits the geometrical structure of the underlying
optimization problem and presents an efficient optimization al-
gorithm. The algorithm uses elements of sphere decoding [35] to
provide optimal switching sequences, requiring only little com-
putational resources. This enables the use of long prediction
horizons in power electronics applications.

The proposed computational approach is derived for a linear
system with a switched three-phase input with equal switching
steps in all phases. Specifically, the present work focuses on a
variable speed drive system, consisting of a three-level neutral
point clamped voltage source inverter driving a medium-voltage
induction machine. Our results in the analysis part [34] show that
using prediction horizons larger than one does, in fact, provide
significant performance benefits. In particular, at steady-state
operation, the current distortions and/or the switching frequency
can be reduced considerably with respect to direct MPC with
a horizon of one. Indeed, in some cases, a steady-state perfor-
mance can be achieved that is similar to the one of optimized
pulse patterns [36].

In summary, the contribution of this paper and its analysis
part [34] is fourfold, by substantiating the following statements.
First, direct MPC problems with reference tracking and long
prediction horizons can be solved in a computationally efficient
way, by adopting sphere decoding and tailoring it to the problem
at hand. Second, long horizons provide at steady state a better
performance than the horizon one case. Third, long horizons
do not have an adverse impact on the transient performance.
Fourth, the computation time can be further reduced by using
a simple rounding scheme. The latter gives suboptimal results,
which are close to optimal when the switching effort is very
high.

The remainder of this paper is organized as follows. Section II
describes the drive system case study used throughout the two
papers. Section III states the model predictive current control
problem to be solved, which can be cast as an integer QP, as
shown in Section IV. By adopting the notion of sphere decoding,
the integer program can be solved efficiently, as described in
detail in Section V. Conclusions are provided in Section VI.

Throughout the paper, we use normalized quantities and adopt
the per unit (pu) system. Extending this to the time scale t,
one time unit corresponds to 1/ωb s, where ωb is the base
angular velocity. Additionally, we use ξ(t), t ∈ R, to denote
continuous-time variables, and ξ(k), k ∈ N, to denote discrete-
time variables with the sampling interval Ts . All variables
ξabc = [ξa ξb ξc]

T in the three-phase system (abc) are trans-
formed to ξαβ = [ξα ξβ]T in the stationary orthogonal αβ co-

Fig. 1. Three-level three-phase neutral point clamped voltage source inverter
driving an induction motor with a fixed neutral point potential.

ordinates through ξαβ = P ξabc , where

P =
2

3

⎡
⎢⎢⎣

1 −1

2
−1

2

0

√
3

2
−

√
3

2

⎤
⎥⎥⎦. (1)

II. DRIVE SYSTEM CASE STUDY

While the ideas of this study can be applied to general ac–dc,
dc–dc, dc–ac, and ac–ac topologies with linear loads, including
active front ends, inverters with RL loads and inverters with ac
machines, we focus our exposition on the setup described in the
sequel.

A. Physical Model of the Inverter

As an illustrative example of a medium-voltage power elec-
tronic system, consider a variable speed drive consisting of a
three-level neutral point clamped (NPC) voltage source inverter
(VSI) driving an induction machine (IM), as depicted in Fig. 1.
The total dc-link voltage Vdc is assumed to be constant and the
neutral point potential N is fixed.

Let the integer variables ua , ub , uc ∈ U denote the switch
positions in the three-phase legs, where for a three-level inverter
the constraint set is given by

U △
= {−1, 0, 1} . (2)

In each phase, the values −1, 0, 1 correspond to the phase volt-
ages −Vd c

2 , 0, Vd c

2 , respectively. Thus, the voltage applied to the
machine terminals in orthogonal coordinates is

vs,αβ =
1

2
Vdc uαβ =

1

2
Vdc P u (3)

with

u
△
= [ua ub uc]

T . (4)

The voltage vectors are shown in Fig. 2.

B. Physical Model of the Machine

The state-space model of a squirrel-cage induction machine
in the stationary αβ reference frame is summarized hereafter.
For the current control problem at hand, it is convenient to
choose the stator currents isα and isβ as state variables. The

Figure 4.1: Three-level three-phase neutral point clamped (NPC) voltage source in-
verter driving an induction motor with a fixed neutral point potential.

In modern techniques to control variable-speed drive systems, the con-
trol is split into two cascaded loops. The outer loop controls the machine
speed by manipulating the torque reference. The inner loop controls the
torque and the fluxes by manipulating the voltages applied to the stator
windings of the machine. Our approach focuses on the inner loop. The
reference torque is converted into stator currents references that must be
tracked and the controller manipulates the stator voltages by applying
different inverter switch positions.

We can write the system dynamics as the following discrete-time linear
time-invariant (LTI) system

xph(k + 1) = Aphxph(k) +Bphusw(k)
yph(k) = Dphxph(k),

(4.1)

where the state vector xph = (is, ψr) ∈ R4 includes the stator current
and rotor flux in the αβ reference frame. The output vector is the stator
current, i.e., yph = is ∈ R2. The input usw = (ua, ub, uc) ∈ {−1, 0, 1}3
represents the switch positions in the three phase legs corresponding to
different voltages {−Vdc/2, 0, Vdc/2} applied to the stator windings. The
sampling time is Ts = 25 µs. See Appendix B for a detailed derivation.

50 High-Speed Hybrid MPC for Power Electronics

4.3 Model predictive current control

Our control scheme must address two conflicting objectives simultane-
ously. On the one hand, the distortion of the stator currents is causes
iron and copper losses in the machine leading to thermal losses. Because
of the limited cooling capability of the electrical machine, the stator cur-
rent distortions have to be kept as low as possible. On the other hand,
high frequency switching of the inputs usw produces high power losses and
stress on the semiconductor devices. Owing to the limited cooling capabil-
ity in the inverter, we therefore should minimize the switching frequency
of the integer inputs.

The controller sampling time plays an important role in the distortion
and switching frequency tradeoff. Depending on the precision required in
defining the inverter switching times, the controller is discretized with
larger (e.g., 125 µs) or smaller (e.g., 25 µs) sampling times. Larger sam-
pling times define a more coarse discretization grid leading to less precise
definition of the switching instants, but more available time to perform the
computations during the closed-loop cycles. Lower sampling times, on the
other hand, lead to improved controller accuracy while reducing the al-
lowed computing time. However, for the same switching frequency, longer
sampling times produce higher distortions. Ideally, we should choose the
sampling time as low as possible to have the highest possible accuracy.

4.3.1 Machine design based approaches

The effect of the inverter switchings on the torque ripples can be improved
during the machine design. In particular, increasing the time constants
of the stator and the rotor τs and τr can reduce the amplitude of the
torque ripples by decreasing the derivative of the currents is and fluxes
ϕr. This is achieved naturally when dealing with machines with higher
power. Thanks to the flexibility of model based controller designs such
as MPC, different machine dynamics influencing the torque ripples are
automatically taken into account by the controller, which adapts the op-
timal input computation depending on the plant parameters. Thus, any
improvements during the machine design can be optimally exploited by

4.3. Model predictive current control 51

adapting the internal model dynamics in the controller.
Another similar approach is to include LCL filters between the inverter

and the motor to decrease the high frequency components of the currents;
see [152]. These approaches allow operation at lower switching frequencies
with low THD at the same time. However, it is sometimes impossible to
change the machine’s physical configuration and it is necessary to operate
the inverter at high switching frequencies to satisfy high performance
requirements in terms of stator currents distortion.

4.3.2 Total harmonic distortion

The current distortion is measured via the total harmonic distortion
(THD). Given an infinitely long time-domain current signal i and its fun-
damental component i? of constant magnitude, the THD is proportional
to the root mean square value of the difference i− i?. Hence, we can write
for one phase current

THD ∼ lim
M→∞

√√√√ 1
M

M−1∑
k=0

(i(k)− i?(k))2, (4.2)

with M ∈ Z++. For three-phase currents the THD is proportional to the
mean value of (4.2) over the phases. It is of course not possible to calculate
the THD in real-time within our controller computations because of finite
storage constraints.

To overcome this problem, we will embed the desired currents into the
state dynamics. According to (4.2), the THD is proportional to the stator
current ripple which can be written in the αβ coordinate system [80] as

THD ∼ lim
M→∞

M−1∑
k=0
‖ei(k)‖22, (4.3)

where we have introduced the error signal ei := is − i?s. It is straightfor-
ward to show [60] that the stator current reference during steady-state
operation at rated frequency is given by

i?s(k) = (sin (k) ,− cos (k)). (4.4)

52 High-Speed Hybrid MPC for Power Electronics

Hence, in order to minimize the THD, we minimize the squared 2-norm
of vector ei over all future time steps. We also introduce a discount factor
γ ∈ (0, 1) to normalize the summation preventing it from going to infin-
ity due to persistent tracking errors. The cost function related to THD
minimization is therefore

∞∑
k=0

γk ‖ei(k)‖22 . (4.5)

In order to construct a regulation problem, we include the oscillating
currents from (4.4) as two additional uncontrollable states xosc = i?s within
our model of the system dynamics. We then model the ripple signal ei as
an output defined by the difference between two pairs of system states.

4.3.3 Switching frequency

The switching frequency of the inverter can be identified by computing
the average frequency of each active semiconductor device. As displayed
in Figure 4.1, the total number of switches in all three phases is 12, and,
for each switching transition by one step up or down in a phase, one
semiconductor device is turned on. Thus, the number of on transitions
occurring between time step k − 1 and k is given by the 1-norm of the
difference of the inputs vectors: ‖usw(k)− usw(k − 1)‖1.

Given a time interval centered at the current time step k from k−M
to k + M , it is possible to estimate the switching frequency by counting
the number of on transitions over the time interval and dividing the sum
by the interval’s length 2MTs. We then can average over all the semicon-
ductor switches by dividing the computed fraction by 12. At time k, the
switching frequency estimate can be written as

fsw,M(k) := 1
12 · 2MTs

M∑
i=−M

‖usw(k + i)− usw(k + i− 1)‖1, (4.6)

which corresponds to a non-causal finite impulse response (FIR) filter
of order 2M . The true average switching frequency is the limit of this

4.3. Model predictive current control 53

quantity as the window length goes to infinity

fsw := lim
M→∞

fsw,M(k), (4.7)

and does not depend on time k.
The fsw computation brings similar issues as the THD. In addition to

finite storage constraints, the part of the sum regarding the future signals
produces a non-causal filter that is impossible to implement in a real-time
control scheme.

To overcome the difficulty of dealing with the filter in (4.6), we con-
sider only the past input sequence, with negative time shift giving a causal
FIR filter estimating fsw. Note that we take into account future input se-
quences in (4.6) inside the controller prediction. The FIR filter could be
estimated with a high order LTI system so that there is one state per
time step from 0 to −M . However,M is usually in the order of thousands
and the resulting filter dimension would be prohibitive for embedded con-
trollers with limited computational capabilities. Instead, this filter is ap-
proximated with an infinite impulse response (IIR) one whose dynamics
can be modeled as a LTI system. This approach can also be interpreted
as a model order reduction technique for FIR filters [102].

Let us define three binary phase inputs denoting whether each phase
switching position changed at time k or not, i.e.,

p(k) := (pa(k), pb(k), pc(k)) ∈ {0, 1}3, (4.8)

with
ps(k) = ‖us(k)− us(k − 1)‖1 , s ∈ {a, b, c}. (4.9)

The FIR filter to approximate can be then written as

f̂sw(k + 1) = 1
12TsM

M∑
i=0

pa(k − i) + pb(k − i) + pc(k − 1),

where f̂sw(k) is the estimated switching frequency. We can approximate
this IIR filter with the following first-order FIR filter

f̂sw(k + 1) = a1f̂sw(k) + 1− a1

12Ts
[
1 1 1

]
p(k)

54 High-Speed Hybrid MPC for Power Electronics

with pole a1 = 1 − 1/r1 describing the memory of the filter and r1 >>
0. Our numerical simulations showed that a higher order approximation
can provide more accurate and smooth frequency estimators. Thus, we
construct a second-order IIR filter by extending the last one obtaining

xflt(k + 1) =
[

a1 0
1− a1 a2

]
︸ ︷︷ ︸

Aflt

xflt(k) +
1− a2

12Ts

[
1 1 1
0 0 0

]
︸ ︷︷ ︸

Bflt

p(k) (4.10)

f̂sw(k) =
[
0 1

]
xflt(k), (4.11)

where xflt(k) is the filter state. The two poles at a1 = 1 − 1/r1 and
a2 = 1 − 1/r2 with r1, r2 >> 0 can be tuned to shape the behavior of
the filter. Increasing a1, a2 makes the estimate smoother, while decreasing
a1, a2 gives faster estimation with more noisy values.

We denote the difference between the approximation f̂sw and the tar-
get frequency f?sw by esw := f̂sw − f?. The quantity to be minimized in
order to bring the switching frequency estimate as close to the target as
possible is therefore

∞∑
k=0

δγk ‖esw(k)‖22 , (4.12)

where δ ∈ R+ is a design parameter included to reflect the importance of
this part of the cost relative to the THD component.

Finally, we can augment the state space to include the filter dynamics
and the target frequency by adding the states (xflt, f

?
sw) so that the con-

trol inputs try to drive the difference between two states to zero. Since
the physical states are expressed in the pu system with values around
1, in order to have these augmented states within the same order of
magnitude we will normalize them by the desired frequency f?sw defin-
ing xsw := ((1/f?sw)xflt, 1) and the matrices Asw := blkdiag(Aflt, 1),
Bsw := (Bflt, 0).

4.3. Model predictive current control 55

4.3.4 Model predictive control formulation

States. Let us define the complete augmented state as

x(k) := (xph(k), xosc(k), xsw(k), usw(k − 1)), (4.13)

with x(k) ∈ R9×{−1, 0, 1}3 and total state dimension n = 12. Vector xph
represents the physical system from Section 4.2, xosc defines the oscillating
states of the sinusoids to track introduced in Section 4.3.2, and usw(k−1)
are additional states used to keep track of the physical switch positions
at the previous time step. The vector xsw are the states related to the
switching filter from Section 4.3.3.

Inputs. We denote the inputs as

u(k) := (usw(k), p(k)), (4.14)

with u(k) ∈ Rm and input dimension m = 6. The vector usw are the
physical switch positions and p are the three binary inputs entering in the
frequency filter from Section 4.3.3. To simplify the notation let us define
the matrices G and T to obtain usw(k) and p(k) from u(k) respectively,
i.e., such that usw(k) = Gu(k) and p(k) = Tu(k). Similarly, to obtain
usw(k − 1) from x(k) we define a matrix W so that usw(k − 1) = Wx(k).

Augmented system dynamics. Given the state x definition in (4.13)
and the input u definition (4.14) we can define the dynamics

x(k + 1) = Ax(k) +Bu(k)
y(k) = Cx(k),

(4.15)

56 High-Speed Hybrid MPC for Power Electronics

where A := blkdiag(Aph, Aosc, Asw, 0) and

B :=


Bph 0

0 0
0 Bflt
I 0

 ,

C :=

1 0 0 0 −1 0 0 0 0 0 0 0
0 1 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 δ −δ 0 0 0

 .
They consist of the physical model (4.1) together with the augmentations
in Sections 4.3.3 and 4.3.2.

MPC Problem. We can write the MPC problem with horizon N ∈
Z++ as

minimize
∑N−1
k=0 γk`(x(k)) + γN V̂ (x(N))

subject to x(k + 1) = Ax(k) +Bu(k)
x(0) = x0
x(k) ∈ X , u(k) ∈ U(x(k)).

(4.16)

The stage cost combines the THD and the switching frequency penalties
in (4.5) and (4.12) respectively

`(x(k)) = ‖Cx(k)‖22 = ‖ei(k)‖22 + δ ‖esw(k)‖22 .

The function V̂ is an approximation of the infinite horizon tail cost. The
matrices A, B and C define the extended system dynamics (4.15) and the
output vector.

We define the input constraints set as

U(x(k)) :=
{
‖Tu(k)‖∞ ≤ 1, (4.17)

− Tu(k) ≤ Gu(k)−Wx(k) ≤ Tu(k), (4.18)

Gu(k) ∈ {−1, 0, 1}3
}
, (4.19)

4.3. Model predictive current control 57

where constraint (4.17) defines the relationship between usw and p
from (4.8) and (4.9). Constraint (4.18) together with (4.17) defines
the switching constraints ‖usw(k)− usw(k − 1)‖∞ ≤ 1 imposed to avoid
shoot-throughs in the inverter positions that could damage the compo-
nents. Finally, (4.19) enforces integrality of the switching positions.

The number of switching sequence combinations grows exponentially
with the horizon length N , i.e., 33N = 27N . The problem therefore be-
comes extremely difficult to solve for even modest horizon lengths.

Observe that the controller tuning parameters are δ, which defines the
relative importance of the THD and fsw components of the cost function,
and r1, r2, which shape the switching frequency estimator.

Tail cost approximation. We compute the tail cost V̂ using ADP-based
methods developed in Chapter 3 by solving an SDP offline. The reader can
find the detailed derivation of the optimization problem in Appendix B.5.
The resulting quadratic function of the form (3.11) can be used directly in
problem (4.16) providing good predictive behavior with a limited number
of initial computation steps.

4.3.5 Control loop

The complete block diagram is shown in Figure 4.2. The desired torque
T ? determines the currents xosc by setting the initial states of the oscilla-
tor “OSC”. The motor speed ωr and the stator currents is are measured
directly from the machine. They enter in the observer “OBS” providing
the physical states of the motor xph. The auxiliary inputs p are fed into
the filter “FLT” estimating the switching frequency in xsw. The switch
positions usw go through a one step delay and are exploited again by the
MPC formulation.

Following a receding horizon control strategy, at each stage k we solve
the problem (4.16), obtaining the optimal sequence {u?(k)}N−1

k=0 from
which only u?(0) is applied to the switches. At the next stage k+ 1, given
new vectors xosc(k), xph(k), usw(k − 1) and xsw(k) as in Figure 4.2, we
solve a new optimization problem providing an updated optimal switch-

58 High-Speed Hybrid MPC for Power Electronics

OSC

MPC

FLT

z−1

MOTOR

OBS

T ?(k) xosc(k)
usw(k)

is(k)ωr(k)

p(k)
xsw(k)

usw(k − 1)

xph(k)

xph(k)

CONTROLLER

Figure 4.2: Block diagram of the control loop. The controller within the dotted line
receives the desired torque T ?(k) and the motor states xph(k) providing the switch
position usw(k).

4.4. Framework for performance evaluation 59

ing sequence, and so on. The whole control algorithm, appearing within
the dotted line, runs within 25 µs.

4.3.6 Integer optimization problem

Since we consider short horizons, we adopt a condensed MPC formulation
of problem (4.16) with only input variables, producing a purely integer
program. In this way all possible discrete input combinations can be eval-
uated directly. With a sparse formulation including the continuous states
within the variables, it would be necessary to solve a mixed-integer pro-
gram requiring more complex computations.

Let us define the input sequence over the horizon N starting at time
0 as

u = (u(0), u(1), . . . , u(N − 1)) ∈ R6N , (4.20)

where we have dropped the time index from u to simplify the notation.
We can rewrite problem (4.16) as a parametric integer quadratic program
in the initial state x0,

minimize uTQu+ 2f (x0)T u
subject to Fu ≤ g(x0)

u ∈ Z6N .

(4.21)

In Appendix B.6 we describe the algebraic manipulations performed to
derive this problem.

4.4 Framework for performance evaluation

To benchmark our algorithm we consider a neutral point clamped voltage
source inverter connected to a medium-voltage induction machine and
a constant mechanical load. We consider the same model as in [80]: a
3.3 kV and 50 Hz squirrel-cage induction machine rated at 2 MV A with
a total leakage inductance of 0.25 pu. On the inverter side, we assume
the dc-link voltage Vdc = 5.2 kV to be constant and the potential of the
neutral point to be fixed. The base quantities of the pu system are the

60 High-Speed Hybrid MPC for Power Electronics

following: Vb =
√

2/3Vrat = 2694 V, Ib =
√

2Irat = 503.5 A and fb =
frat = 50 Hz. Quantities Vrat, Irat and frat refer to the rated voltage,
current and frequency respectively. The detailed parameters are provided
in Table 4.1. The switching frequency is typically between 200 and 350 Hz
for medium-voltage inverters [81]. If not otherwise stated, all simulations
were done at rated torque, nominal speed and fundamental frequency of
50 Hz.

Table 4.1: Rated values and parameters of the drive [81]

Induction Motor Inverter

Voltage 3300 V Rs 0.0108 pu Vdc 1.930 pu
Current 356 A Rr 0.0091 pu xc 11.769 pu
Real power 1.587 MW Xls 0.1493 pu
Apparent power 2.035 MW Xlr 0.1104 pu
Frequency 50 Hz Xm 2.3489 pu
Rotational speed 596 rpm

We consider an idealized model with the semiconductors switching
instantaneously. As such, we neglect second-order effects like deadtimes,
controller delays, measurement noise, observer errors, saturation of the
machine’s magnetic material, variations of the parameters and so on.
This is motivated by the fact that, using a similar model, previous sim-
ulations [79] showed a very close match with the experimental results
in [140]. All the steady-state simulations in the following sections were
also performed with model mismatch of ±1 % in all the parameters of Ta-
ble 4.1 showing negligible variations in the THD. However, we omit these
benchmarks since an exhaustive sensitivity analysis is out of the scope of
this chapter.

4.5 Achievable performance in steady-state

We performed closed loop simulations in steady-state operation in
MATLAB to benchmark the achievable performance in terms of THD

4.5. Achievable performance in steady-state 61

and switching frequency. The system was simulated for 4 periods before
recording to ensure it reaches steady-state operation. We computed THD
and switching frequency over simulations of 20 periods. The discount fac-
tor was chosen as γ = 0.95 and the switching frequency filter parameters
as r1 = r2 = 800 in order to get a smooth estimate. We chose weight-
ing δ such that the switching frequency is around 300 Hz. The infinite
horizon estimation SDP (B.7) was formulated using YALMIP [120] with
M = 50 Bellman iterations and was solved offline using MOSEK [130].
Note that in case of a change in the systems parameters, e.g., the dc-link
voltage or the rotor speed, the tail cost has to be recomputed. However,
it possible to precompute offline and store several quadratic tail costs for
different possible parameters and evaluate the desired one online without
significant increase in complexity.

For comparison, we simulated the drive system also with the direct
MPC controller described in [80] (denoted DMPC) tuned in order to have
the same switching frequency by adjusting the weighting parameter λu.

The integer optimization problems were solved using GUROBI Opti-
mizer [92]. Numerical results with both approaches appear in Table 4.2.
Note that the choice of the solver does not influence the THD or the
switching frequency and we would have obtained the same results with
another optimization software.

Table 4.2: Simulation Results with ADP and with DMPC from [80] at switching fre-
quency 300 Hz

ADP DMPC [80]

δ THD [%] λu THD [%]

N = 1 4 5.24 0.00235 5.44
N = 2 5.1 5.13 0.00690 5.43
N = 3 5.5 5.10 0.01350 5.39
N = 10 10 4.80 0.10200 5.29

Our method, with a horizon of N = 1 provided both a THD improve-
ment over the DMPC formulation in [80] with N = 10 and drastically bet-
ter numerical speed. This shows how choosing a meaningful cost function

62 High-Speed Hybrid MPC for Power Electronics

can provide good control performance without recourse to long horizons.
Moreover, we also performed a comparison with longer horizons N = 2,
N = 3 and N = 10. Our method, with horizon N = 10 would give an even
greater reduction in THD to 4.80 %. However, it would be impossible to
compute the solutions within the required sampling time since the total
number of combinations would be 2710 ≈ 210 trillion.

4.6 FPGA implementation

4.6.1 Hardware setup

We implemented the control algorithm on a Xilinx Zynq (xc7z020) [183],
a low cost field-programmable gate array (FPGA), running at approx-
imately 150 MHz mounted on the Zedboard evaluation module [6]. Fig-
ure 4.3 shows the hardware used in the experiments. We coded the control
algorithm in C++ using the PROTOIP Toolbox [110]. The FPGA ven-
dor’s High-Level Synthesis tool Xilinx Vivado HLS [182] was used to con-
vert the written code to VHSIC hardware description language (VHDL)
defining the Programmable Logic connections.

4.6.2 Algorithm description

We now present a detailed description of how the controller within the
dotted lines in Figure 4.2 was implemented on the FPGA.

We implemented the updates in OSC and FLT as simple matrix mul-
tiplications. The solver for the integer problem (4.21) was implemented
with a simple exhaustive search algorithm for three reasons: first, the
tail cost approximation provides good performance with very few horizon
steps while considering a relatively small number of input combinations;
second, the structure of the problem allows us to evaluate both the in-
equalities and cost function for multiple input sequences in parallel; third,
the FPGA logic is particularly suited for highly pipelined and/or paral-
lelized operations, which are at the core of exhaustive search.

4.6. FPGA implementation 63

To exploit the FPGA architecture, we implemented our algorithm
in fixed-point arithmetic using custom data types defined in Vivado
HLS [182]. In particular, we used 4 integer and 0 fractional bits to describe
the integer inputs and 2 integer and 22 fractional bits to describe the states
and the cost function values. This choice is given by the minimum number
of bits necessary to describe these quantities from floating-point simula-
tions in Section 4.5. Note that the exhaustive search algorithm does not
suffer from any accumulation of rounding error because it consists entirely
of independent function evaluations, in contrast to iterative optimization
algorithms [137].

We provide pseudo-code for our method in Algorithm 4. From Fig-
ure 4.2,the controller receives the required torque T ?(k) and the motor
states xph(k) and returns the switch positions usw(k). From line 3 to line 7
the oscillator OSC and the filter FLT serve to compute the new initial
state x0 for the optimization algorithm. Note that if there is a change in
the required torque then we reset the oscillator states xosc(k) to match the
new T ?(k). Line 8 precomputes the vectors in problem (4.21) depending
on x0.

The main loop iterating over all input combinations is split into two
subloops: loop 1, which is completely decoupled and can be parallelized;
and loop 2, which can only be sequential.

Loop 1. Loop 1 from line 9 to 15 computes the cost function values for
every combination i and stores it into vector J . All the possible input
sequence combinations are saved in the static matrix U . For every loop
cycle, sequence i is saved into variable u. Then, in line 10, we update
the value of p(k) inside u with usw(k − 1) according to (4.8) and (4.9).
If u does not satisfy the constraint Fu ≤ g(x0), then the we set the
related cost to a high value Jub (line 11). Note that even though it would
bring considerable speed improvements, we do not precompute offline the
quadratic part uTQu of the cost and the left side of the inequality Fu
since it would also require enumeration over inputs at the previous control
cycle used in line 10. Each iteration of this loop is independent from the
others and can therefore be parallelized efficiently.

64 High-Speed Hybrid MPC for Power Electronics

Algorithm 4 Controller Algorithm
1: function ComputeMPCinput(T ?(k), xph(k))

Data: xosc(k − 1), xsw(k − 1), p(k − 1) and usw(k − 1)
Parameters: U ∈ Z6×27N , Jub ∈ R
Initialize: J ∈ R27N , Jmin ∈ R and imin ∈ Z
Execute oscillator and filter to obtain initial state:

2: xosc(k)← Aoscxosc(k − 1)
3: if change in T ?(k) then
4: xosc(k)← Reset according to (B.3)
5: end if
6: xsw(k)← Aswxsw(k − 1) + Bswp(k − 1)
7: x0 ← (xph(k), xosc(k), xsw(k), usw(k − 1))

Precompute vectors:
8: f(x0)← from (B.13), g(x0)← from (4.17), (4.18) and (4.19).

Loop 1 – Compute cost function values:
9: for i = 1, . . . , 27N do
10: u← U(:,i), u(4:6) ← ‖u(1:3) − usw(k − 1)‖1
11: J(i) ← uT Qu + 2f(x0)T u
12: if F u > g(x0) then
13: J(i) ← Jub
14: end if
15: end for

Loop 2 – Find minimum:
16: Jmin ← Jub, imin ← 1
17: for i = 1, . . . , 27N do
18: if J(i) ≤ Jmin then
19: Jmin ← J(i), imin ← i
20: end if
21: end for

Return results
22: return usw(k)← U(1:3,imin), p(k)← U(4:6,imin)
23: end function

4.6. FPGA implementation 65

Loop 2. Loop 2 from line 16 to 21 is a simple loop iterating over the
computed cost function values to find the minimum and save it into Jmin.
Every iteration depends sequentially on Jmin which is accessed and can
be modified at every i. Thus, in this form it is not possible to parallelize
this loop.

4.6.3 Circuit generation

In Vivado HLS [182] it is possible to specify directives to optimize the
circuit synthesis according to the resources available on the target board.
Loop 1 and loop 2 were pipelined and the preprocessing operations from
line 3 to 8 parallelized. We generated the circuit for the algorithm 4 with
horizons N = 1 and N = 2 at frequency 150 MHz (clock cycle of 7 ns).
The resources usage and the timing estimates are displayed in Table 4.3.
Since timing constraints were met, there was no need to parallelize loop
1 to reduce computation time.

Table 4.3: Resources Usage and Timing Estimates for Implementation on the Xilinx
Zynq FPGA (xc7z020) running at 150 MHz

N = 1 N = 2

FPGA Resources

LUT 15127 (28 %) 31028 (58 %)
FF 11156 (10 %) 20263 (19 %)
BRAM 6 (2 %) 21 (7 %)
DSP 89 (40 %) 201 (91 %)

Clock Cycles 371 1953
Delay 2.60 µs 13.67 µs

Note that for N = 2 we are using already 91 % of the DSP multipliers.
This is due to the limited amount of resources available on the low-cost
hardware chosen.

66 High-Speed Hybrid MPC for Power Electronics

4.7 Processor-in-the-loop tests

We performed PIL experiments using the controller FPGA fixed-point
implementation developed in Section 4.6 and the machine model described
in Section 4.4.

We operated the control loop using the PROTOIP toolbox [110]: the
plant model was simulated on a Macbook Pro 2.8 GHz Intel Core i7 with
16GB of RAM while the control algorithm was entirely executed on the
Zedboard development board described in Section 4.6.1.

4.7.1 Steady State

We benchmarked the steady-state operation to compare the performance
to the results obtained in Table 4.2. We chose the same controller param-
eters as in Section 4.5.

The PIL tests for horizon N = 1 are shown in Figure 4.4 in the pu
system. The three-phase stator currents are displayed over a fundamental
period in Figure 4.4a, the three spectra are shown in Figure 4.4c with
THD of 5.23 % and the input sequences are plotted in Figure 4.4b.

From the experimental benchmarks with horizon N = 1 and N = 2
we obtained THD = 5.23 % and THD = 5.14 % respectively. As expected,
these results are very close to the simulated ones in Table 4.2. The slight
difference (∼ 0.01 %) comes from the fixed-point implementation of the
oscillator OSC and the filter FLT in Figure 4.2.

4.7.2 Transients

One of the main advantages of direct MPC is the fast transient response
[80]. We tested torque transients in PIL with the same tuning parameters
as in the steady state benchmarks. At nominal speed, reference torque
steps were imposed; see Figure 4.5b. These steps were translated into
different current references to track, as shown in Figure 4.5a, while the
computed inputs are shown in Figure 4.5c.

The torque step from 1 to 0 in the per unit system presented an ex-
tremely short settling time of 0.35 ms, similar to deadbeat control ap-

4.7. Processor-in-the-loop tests 67

proaches [45]. This was achieved by inverting the voltage applied to
the load. Since we prohibited switchings between −1 and 1 in (4.17)
and (4.18), the voltage inversion was performed in 2Ts via an interme-
diate zero switching position.

Switching from 0 to 1 torque produced much slower response time
of approximately 3.5 ms. This is due to the limited available voltage in
the three-phase admissible switching positions. As shown in Figure 4.5c,
during the second step at time 20 ms, the phases b and c saturated at the
values +1 and −1 respectively for the majority of the transient providing
the maximum available voltage that could steer the currents to the desired
values.

These results match the simulations of the formulation in [80] in terms
of settling time showing that our method possesses the fast dynamical
behavior during transients typical of direct current MPC.

As noted in [80], having a longer horizon or a better predictive be-
havior does not significantly improve the settling times. This is because
the benefit of longer prediction obtainable by extending the horizon or
adopting a powerful final stage costs is reduced by the saturation of the
inputs during the transients.

4.7.3 Execution Time

To show that the controller is able to run on cheap hardware within
Ts = 25 µs, we measured the time the FPGA took to execute Algorithm 4
for horizon N = 1 and N = 2. Since there are no available DMPC sphere
decoding algorithm execution times, we compared our results to the time
needed to solve the DMPC formulation in [81] for the same horizon lengths
on a Macbook Pro with Intel Core i7 2.8 GHz and 16GB of RAM using
the commercial integer program solver GUROBI Optimizer [92] which im-
plements an efficient branch-and-bound algorithm. The results are shown
in Figure 4.6.

The FPGA execution times were 5.76 µs and 17.27 µs for horizon N =
1 and N = 2 respectively. Note that they presented a slight overhead
of approximately 3.5 µs compared to the estimates in Table 4.3 since the
measured times included the time needed to exchange the input-output

68 High-Speed Hybrid MPC for Power Electronics

data from the FPGA to the ARM processor through RAM. Without the
overhead, the estimated FPGA computing times obtained by the circuit
generation are exact; see [183].

Note that the time needed by the FPGA to compute the control algo-
rithm is deterministic with zero variance. This makes our PIL implemen-
tation particularly suited for real-time applications. Furthermore, it is im-
portant to underline that the method we propose is the only method avail-
able that can produce integer optimal solutions to this problem achieving
this performance in 25 µs sampling time.

GUROBI optimizer needed (621.20± 119.98) µs and (750.40± 216.15) µs
to complete the operations for horizons N = 1 and N = 2 respectively.
The non-negligible standard deviation appeared because of the branch-
and-bound algorithm implemented in GUROBI. However, since we are
considering real-time applications, we are interested in the worst case
number of visited nodes which is always the whole tree of combinations,
i.e., 27N . Note that the DMPC formulation was solved in [81] using a
different branch-and-bound algorithm based on the sphere decoding algo-
rithm [93], but the worst case number of visited nodes cannot be easily
reduced because of the NP-hardness of the problem.

4.8 Conclusions

This Chapter proposed a new computationally efficient direct MPC
scheme for current reference tracking in power converters. We extended
the problem formulation in [80] and [81] in order to include a switching
frequency estimator in the system state and rewrite the optimal control
problem as a regulation one. To reduce the horizon length and decrease
the computational burden while preserving good control performances, we
estimated the infinite horizon tail cost of the MPC problem formulation
using ADP.

Steady-state simulation results showed that with our method requiring
short horizons, it is possible to obtain better performance than the direct
MPC formulation in [81] with long horizons. This is due to the predictive
behavior of the tail cost function obtained with ADP.

The control algorithm was implemented in fixed-point arithmetic on

4.8. Conclusions 69

the low size Xilinx Zynq FPGA (xc7z020) for horizons N = 1 and N = 2.
PIL tests during steady-state operation showed an almost identical perfor-
mance to the simulation results. We also performed transient simulations
where our proposed approach exhibited the same very fast dynamic re-
sponse as the direct MPC described in [81]. Moreover, we showed that
our algorithm can run within the sampling time of 25 µs by measuring
the execution time on the FPGA. Results showed that only 5.76 µs and
17.27 µs are required to run our controller for horizons N = 1 and N = 2
respectively.

70 High-Speed Hybrid MPC for Power Electronics

Figure 4.3: Zedboard Evaluation Board used for PIL Tests. The controller runs on the
FPGA while the plant is simulate on the laptop. The states and input vectors are
passed via the ethernet cable (yellow). The micro-usb cable on the left side provides
a UART interface with the laptop used to print if there are any problems in the
communication. The cable in the top left corner is connected to the power supply
while the other micro-usb cable next to it provides access to the USB-JTAG interface
to program the FPGA module.

4.8. Conclusions 71

Time [ms]
0 5 10 15 20

-1

-0.5

0

0.5

1

(a) Three-phase stator currents (solid
lines) with their references (dashed
lines).

0 5 10 15 20

-1

0

1

0 5 10 15 20

-1

0

1

Time [ms]
0 5 10 15 20

-1

0

1

(b) Three-phase switch positions in-
puts.

0 500 1000 1500 2000

0.01

0.02

0 500 1000 1500 2000

0.01

0.02

Time [ms]
0 500 1000 1500 2000

0.01

0.02

(c) Stator current spectrum.

Figure 4.4: Waveforms produced during PIL Tests by the direct model predictive con-
troller at steady state operation, at full speed and rated torque. Horizon of N = 1 is
used. The switching frequency is approximately 300 Hz and the current THD is 5.23 %.

72 High-Speed Hybrid MPC for Power Electronics

Time [ms]
0 5 10 15 20 25 30

-1

-0.5

0

0.5

1

(a) Three-phase stator currents (solid
lines) with their references (dashed
lines).

Time [ms]
0 5 10 15 20 25 30

0

0.25

0.5

0.75

1

(b) Actual (solid line) and reference
(dashed line) torques.

0 5 10 15 20 25 30

-1

0

1

0 5 10 15 20 25 30

-1

0

1

Time [ms]
0 5 10 15 20 25 30

-1

0

1

(c) Three-phase switch positions in-
puts.

Figure 4.5: Reference torque steps produced by the direct model predictive controller
in PIL tests with horizon N = 1.

4.8. Conclusions 73

0 200 400 600 800 1,000

N = 1

N = 2

Ts

621.2

750.4

5.76

17.27

Execution Time [µs]

GUROBI
FPGA

Figure 4.6: Execution times required by the Xilinx Zynq FPGA (xc7z020) to execute
our controller based on an ADP formulation (blue) and using GUROBI Optimizer [92]
to solve the formulation in [80] on a Macbook Pro with Intel Core i7 2.8 GHz and
16GB of RAM.

Part II

Exact Solution Methods

5
An Operator Splitting Solver for Quadratic

Programs

5.1 Introduction

In this Chapter we propose a new solver for quadratic program (QP) based
on first-order methods. The proposed algorithm and implementation will
be used in Chapter 6 to develop an exact solution method for mixed-
integer quadratic programs (MIQPs) based on branch-and-bound.

5.1.1 The problem

Consider the following optimization problem

minimize 1
2x

TPx+ qTx

subject to Ax ∈ C, (5.1)

where x ∈ Rn is the decision variable. The objective function is defined
by a positive semidefinite matrix P ∈ Sn+ and a vector q ∈ Rn, and the

77

78 An Operator Splitting Solver for Quadratic Programs

constraints by a matrix A ∈ Rm×n and a nonempty, closed and convex
set C ⊆ Rm. We will refer to it as a general (convex) quadratic program.

If the set C takes the form

C = [l, u] := {z ∈ Rm | li ≤ zi ≤ ui, i = 1, . . . ,m} ,

with li ∈ {−∞} ∪R and ui ∈ R ∪ {+∞}, we can write problem (5.1) as

minimize 1
2x

TPx+ qTx

subject to l ≤ Ax ≤ u, (5.2)

which we will denote as a quadratic program. Linear equality constraints
can be encoded by setting li = ui for some or all of the elements in
(l, u). Note that any linear program (LP) can be written in this form by
setting P = 0. We characterize the size of (5.2) with the tuple (n,m,N)
where N is the total number of nonzero entries in P and A, i.e., N :=
nnz(P) + nnz(A).

Applications. Optimization problems of the form (5.1) arise in a huge
variety of applications in engineering, finance, operations research and
many other fields. Applications in machine learning include support vector
machine (SVM) [44], lasso [168, 38] and Huber fitting [98, 99]. Financial
applications of (5.1) include portfolio optimization [42, 122, 31, 28] [33,
§4.4.1]. In the field of control engineering, model predictive control
(MPC) [143, 75] and moving horizon estimation (MHE) [3] techniques
require the solution of a QP at each time instant. Several signal process-
ing problems also fall into the same class [33, §6.3.3][123]. In addition, the
numerical solution of QP subproblems is an essential component in non-
convex optimization methods such as sequential quadratic programming
(SQP) [137, Chap 18] and mixed-integer optimization using branch-and-
bound algorithms [15, 68].

5.1.2 Solution methods

Convex QPs have been studied since the 1950s [70], following from the
seminal work on LPs started by Kantorovich [104]. Several solution meth-

5.1. Introduction 79

ods for both LPs and QPs have been proposed and improved upon
throughout the years.

Active set methods. Active set methods were the first popular QP so-
lution algorithms [180] obtained from an extension of Dantzig’s simplex
method for solving LPs [47]. Active set algorithms select an active set (i.e.,
a set of binding constraints) and then iteratively adapt it by adding and
dropping constraints from the index of active ones [137, §16.5]. New active
constraints are added based on the cost function gradient and the current
dual variables. Active set methods for QPs differ from the simplex method
for LPs because the iterates are not necessarily vertices of the feasible re-
gion. These methods can easily be warm-started to reduce the number of
active set recalculations required. However, the major drawback of active
set methods is that the worst-case complexity grows exponentially with
the number of constraints, since it may be necessary to investigate all
possible active sets before reaching the optimal one [112]. Modern imple-
mentation of active set methods for the solution of QPs can be found in
most commercial solvers such as MOSEK [130] and GUROBI [92], and in
the open-source solver qpOASES [65].

Interior-point methods. Interior-point algorithms gained popularity in
the 1980s as a method for solving LPs in polynomial time [108, 83].
In the 90s these techniques were extended to general convex optimiza-
tion problems, including QPs [136]. Interior-point methods model the
problem constraints as parametrized penalty functions, also referred
to as barrier functions. At each iteration an unconstrained optimiza-
tion problem is solved for varying barrier function parameters until the
optimum is achieved; see [33, Chap. 11] and [137, §16.6] for details.
Primal-dual interior-point methods, in particular the Mehrotra predictor-
corrector [125] method, became the algorithms of choice for practical im-
plementation [181] because of their good performance across a wide range
of problems. However, interior-point methods are not easily warm-started
and do not scale well for very large problems. Interior-point methods are
currently the default algorithms in the commercial solvers MOSEK [130],

80 An Operator Splitting Solver for Quadratic Programs

FORCES [57], GUROBI [92] and CVXGEN [124] and in the open-source
solvers OOQP [77].

First-order methods. First-order optimization methods date back to the
1950s, when they were already applied to solving quadratic programs [70].
These methods iteratively compute an optimal solution using only first-
order information about the cost function. Operator splitting techniques
such as the Douglas-Rachford splitting [119, 58] are a particular class of
first-order methods which model the optimization problem as a sum of
nonlinear operators.

In recent years, the operator splitting method known as the alternating
direction method of multipliers (ADMM) [74, 87] has received particular
attention because of its very good practical convergence behavior; see [32]
for a survey. ADMM can be seen as a variant of the classical alternating
projections algorithm [13] for finding a point in the intersection of two con-
vex sets, and can also be shown to be equivalent to the Douglas-Rachford
splitting [74]. ADMM has been shown to reliably provide modest accuracy
solutions to QPs in a relatively small number of computationally inexpen-
sive iterations. It is therefore well suited to applications such as embedded
optimization or large-scale optimization, wherein high accuracy solutions
are typically not required due to noise in the data and arbitrariness of the
cost function. ADMM steps are computationally very cheap and simple to
implement, and thus ideal for embedded processors with limited comput-
ing resources such as embedded control systems [100, 139, 155]. ADMM is
also compatible with distributed optimization architectures enabling the
solution of very large scale problems [32].

A drawback of first-order methods is that they are typically unable
to detect primal and/or dual infeasibility. In order to address this short-
coming, a homogeneous self-dual embedding was proposed in [138] in con-
junction with ADMM for solving conic optimization problems, including
QPs, and implemented in the open-source solver SCS. A further drawback
of ADMM is that the number of iterations required to converge is highly
dependent on the problem data and on the user’s choice of the algorithm’s
step-size parameters. Despite some recent theoretical results [85, 10], it
remains unclear how to select those parameters to optimize the algorithm

5.1. Introduction 81

convergence. For this reason, even though there are several benefits in us-
ing ADMM techniques for solving optimization problems, there exists no
reliable general-purpose QP solver based on operator splitting methods.

5.1.3 Embedded applications

An important feature of QP solvers is the possibility of being deployed
on embedded hardware for real-time applications.

Real-time applications impose special requirements on the solvers
used [124]. First, embedded solvers must be reliable even in the presence
of poor quality data, and should avoid exceptions caused by division by
zero or memory faults caused by dynamic memory allocation. Second, the
solver should be implementable on low-cost embedded platforms with very
limited memory resources. In particular, solvers should have very small
compiled footprint, should consist only of basic algebraic operations, and
should not be linked to any external libraries, which also makes the solver
easily verifiable. Finally, real-time applications typically require that the
solver is fast and able to correctly identify infeasible problems.

On the other hand, optimization problems arising in embedded ap-
plications have certain features that can be exploited when designing an
embedded solver [124]. First, embedded optimization is typically applied
to the repeated solution of parametrized problems in which the problem
data, but not its dimensions or sparsity pattern, change between problem
instances. For such problems, the solver initialization and some part of
its computations can be performed offline during the solver design phase.
Second, requirements on the solution accuracy in embedded applications
are often moderate because of noise in the data and arbitrariness of the
objective function. Also, in embedded applications one can typically as-
sume that problems are reasonably scaled. As an example, the authors
in [178] show that acceptable control performance of an MPC controller
is achievable even when using a very low accuracy solver. This argument
supports the use of first-order optimization methods, which are known to
return solution of medium accuracy with low computational cost.

82 An Operator Splitting Solver for Quadratic Programs

Related work. In some cases solution of a parametrized convex opti-
mization problem can be precomputed offline using multi-parametric pro-
gramming techniques [18, 169]. However, the memory required for storing
such solutions grows exponentially with the problem dimensions, making
this approach applicable only to relatively small problems.

In the last decade tools for generating custom online solvers for para-
metric problems have attracted increasing attention. CVXGEN [124] is a
code generation software tool for small-scale parametric QPs. The gener-
ated solver is fast and reliable, but its main disadvantage is that the code
size grows rapidly with the problem dimensions. This issue is overcome
in FORCES [57] where the code size of the compiled code is broadly con-
stant with respect to the problem dimensions. In HPMPC [73] tailored
solvers for MPC are combined with high-performance optimized libraries
for linear algebra. ECOS [56, 39] and Bsocp [59] are embedded solvers for
a wider class of second-order cone program programs (SOCPs). All of the
aforementioned solvers are based on primal-dual interior-point methods
that are tailored for their specific problem classes.

In contrast, qpOASES [65] is based on a parametric active-set method
which can effectively use a priori information to speed-up computation
of a QP solution. On the other hand, since qpOASES is based on dense
linear algebra it cannot exploit sparsity in the problem data. Moreover, as
noted in Section 5.1.2 the computational complexity of active-set methods
grows exponentially with the number of constraints.

FiOrdOs [170] uses first-order gradient methods as the basis for the
embedded solvers it generates. In the case of a general QPs, these meth-
ods require a Lipschitz constant of the gradient of the objective function
in order to compute the stepsize. Alternatively, FiOrdOs implements an
adaptive rule for the stepsize selection, but it requires a new matrix fac-
torization each time the stepsize is updated. QPgen [85] uses optimal
preconditioning of the problem data that can improve performance of
first-order methods considerably. The main disadvantage of FiOrdOs and
QPgen is their inability to detect infeasible problems.

5.1. Introduction 83

5.1.4 Our approach

In this work we present a new general-purpose QP solver based on ADMM
that is able to provide high accuracy solutions. The proposed algorithm is
based on a novel splitting requiring the solution of a quasi-definite linear
system that is always solvable for any choice of problem data. We there-
fore pose no requirements such as strict convexity of the cost function
or linear independence of the constraints. Since the linear system matrix
coefficients remain the same at every iteration, we perform only a single
initial factorization at the beginning of the algorithm. Once the initial
factorization is computed, the algorithm is division-free. In contrast to
other first-order methods, our approach is able to return primal and dual
solutions when the problem is solvable or to provide certificates of pri-
mal and dual infeasibility without resorting to the homogeneous self-dual
embedding.

To obtain high quality solutions, we perform solution polishing on
the iterates obtained from ADMM. By identifying the active constraints
from the final dual variable iterates, we construct an ancillary equality-
constrained QP whose solution is equivalent to that of the original
QP (5.1). This ancillary problem is then solved by computing the so-
lution of a single linear system with usually much lower dimensions than
the one solved during the ADMM iterations. When the polishing phase is
successful, the resulting solution of our method has accuracy comparable
or higher than interior-point methods.

Our algorithm can be efficiently warm-started to reduce the number
of iterations. Moreover, if problem matrices do not change, the quasi-
definite system factorization can be reused across multiple solves, greatly
improving the computation time. This feature is particularly useful when
solving parametric QPs where only a few elements of the problem data
change. Examples illustrating the effectiveness of the proposed algorithm
in parametric programs arising in embedded applications appear in [12].

We have implemented our method in the open-source “Operator Split-
ting Quadratic Program” (OSQP) solver. OSQP is written in C and can
be compiled to be library free. OSQP is robust against noisy and un-
reliable problem data, has a very small code footprint, and is suitable
for both embedded and large-scale applications. Our software features

84 An Operator Splitting Solver for Quadratic Programs

complete code generation functionality able to produce tailored C code
suitable for embedded hardware and requiring only static memory allo-
cation. Numerical benchmarks for both desktop and embedded versions
of our solver show that our algorithm is able to provide up to one order
of magnitude computational time improvements over existing commercial
and open-source solvers on a wide variety of applications.

5.2 Optimality conditions

We will find it convenient to rewrite problem (5.1) by introducing an
additional decision variable z ∈ Rm, to obtain the equivalent problem

minimize 1
2x

TPx+ qTx

subject to Ax = z

z ∈ C.
(5.3)

We can write the optimality conditions of problem (5.3) as [145,
Thm. 6.12][33]

Ax = z, (5.4)
Px+ q +AT y = 0, (5.5)
z ∈ C, y ∈ NC(z), (5.6)

where y ∈ Rm is a Lagrange multiplier associated with the constraint
Ax = z and NC(z) denotes the normal cone of C at z. If there exist
x ∈ Rn, z ∈ Rm and y ∈ Rm that satisfy the conditions above, then we
say that (x, z) is a primal and y is a dual solution of problem (5.3). We
define the primal and dual residuals of problem (5.1) as

rprim := Ax− z, (5.7)
rdual := Px+ q +AT y. (5.8)

Quadratic programs. In case of QPs of the form (5.2), condition (5.6)
reduces to

l ≤ z ≤ u, yT+(z − u) = 0, yT−(z − l) = 0, (5.9)

5.3. Solution with ADMM 85

where y+ := max(y, 0) and y− := min(y, 0) componentwise.

5.2.1 Certificates of primal and dual infeasibility

From the theorem of strong alternatives [33, Section 5.8.2], exactly one of
the following sets is nonempty

P = {x ∈ Rn | Ax ∈ C} ,
D =

{
y ∈ Rm | AT y = 0, SC(y) < 0

}
,

where SC is the support function of C, provided that some type of con-
straint qualification holds [33]. This means that the problem is either
feasible, i.e., P is nonempty, or the set D is nonempty. In other words,
any variable y ∈ D serves as a certificate that problem (5.1) is primal
infeasible.

Quadratic programs. In case C = [l, u], certifying primal infeasibility
of (5.2) amounts to finding a vector y ∈ Rm \ {0} such that

AT y = 0, uT y+ + lT y− < 0. (5.10)

Similarly, it can be shown that a vector x ∈ Rn satisfying

Px = 0, qTx < 0, (Ax)i


= 0 li, ui ∈ R
≥ 0 ui = +∞, li ∈ R
≤ 0 li = −∞, ui ∈ R

(5.11)

is a certificate of dual infeasibility for problem (5.2).

5.3 Solution with ADMM

Our method solves the problem (5.3) using the alternating direction
method of multipliers (ADMM) [32]. In the proposed novel splitting the

86 An Operator Splitting Solver for Quadratic Programs

subproblems in each algorithm step are always solvable independently
from the problem data. By introducing auxiliary variables x̃ = x and
z̃ = z, we can rewrite problem (5.3) as

minimize 1
2 x̃

TPx̃+ qT x̃+ IAx=z(x̃, z̃) + IC(z)
subject to (x̃, z̃) = (x, z), (5.12)

where IAx=z and IC are the indicator functions of the sets {(x, z) ∈
Rn×Rm |Ax = z} and C, respectively. For a set X , we define the indicator
function as IX (x) := 1 if x ∈ X and 0 otherwise.

An iteration of ADMM for solving problem (5.12) consists of the fol-
lowing steps:

(x̃k+1, z̃k+1)← argmin
(x̃,z̃):Ax̃=z̃

1
2 x̃

TPx̃+ qT x̃

+ σ
2 ‖x̃− x

k + 1
σw

k‖22 + ρ
2‖z̃ − z

k + 1
ρy

k‖22

(5.13)

xk+1 ← αx̃k+1 + (1− α)xk + 1
σw

k (5.14)

zk+1 ← Π
(
αz̃k+1 + (1− α)zk + 1

ρy
k
)

(5.15)

wk+1 ← wk + σ
(
αx̃k+1 + (1− α)xk − xk+1) (5.16)

yk+1 ← yk + ρ
(
αz̃k+1 + (1− α)zk − zk+1) (5.17)

where σ > 0 and ρ > 0 are the step-size parameters and α ∈ (0, 2) is
the relaxation parameter. Π denotes the Euclidean projection onto set
C defined as Π(x) := argminz∈C ‖x − z‖2. The iterates wk and yk are
associated with the dual variables of the equality constraints x̃ = x and
z̃ = z, respectively. Observe from steps (5.14) and (5.16) that wk+1 =
0 for all k, and consequently the w-iterate and the step (5.16) can be
disregarded.

5.3.1 Solving the linear system

Evaluating the ADMM step (5.13) involves solving the equality con-
strained quadratic optimization problem

minimize 1
2 x̃

TPx̃+ qT x̃+ σ
2 ‖x̃− x

k‖22 + ρ
2‖z̃ − z

k + 1
ρy

k‖22
subject to Ax̃ = z̃.

(5.18)

5.3. Solution with ADMM 87

The optimality conditions for this equality constrained QP are

Px̃k+1 + q + σ(x̃k+1 − xk) +AT νk+1 = 0, (5.19)
ρ(z̃k+1 − zk) + yk − νk+1 = 0, (5.20)

Ax̃k+1 = z̃k+1, (5.21)

where νk+1 ∈ Rm is a Lagrange multiplier associated with the constraint
Ax = z. By eliminating the variable z̃k+1 from (5.20), the above linear
system reduces to[

P + σI AT

A − 1
ρI

] [
x̃k+1

νk+1

]
=
[
σxk − q
zk − 1

ρy
k

]
, (5.22)

where z̃k+1 is recoverable as

z̃k+1 = zk + 1
ρ (νk+1 − yk).

We will refer to the coefficient matrix in (5.22) as the KKT matrix. This
matrix has always full rank thanks to the parameters σ and ρ introduced
in our splitting. Therefore, (5.22) has always a unique solution indepen-
dently from the problem data. Our splitting allows to solve the linear
system in (5.22) using tailored formulations for either a direct method or
an indirect method.

Direct method. The direct method finds an exact solution of the linear
system (5.22) by first computing a factorization of the KKT matrix and
then performing forward and backward substitution. Since the KKT ma-
trix remains the same for every iteration of ADMM, we need to perform
the factorization only once prior to the first iteration and cache the fac-
tors so that we can reuse them in subsequent iterations. This approach is
very efficient when the factorization cost is considerably higher than the
solve cost, so that each iteration is computed quickly.

The KKT matrix is quasi-definite, i.e., it can be written as a 2-by-
2 block-symmetric matrix where the (1, 1)-block is positive definite, and
the (2, 2)-block is negative definite. It therefore always has a well defined

88 An Operator Splitting Solver for Quadratic Programs

LDLT factorization, with L being a lower triangular matrix with unit
diagonal elements and D a diagonal matrix with nonzero diagonal ele-
ments [173]. Note that once the factorization is carried out, computing
the solution of (5.22) can be made division-free by storing theD−1 instead
of D.

When the KKT matrix is sparse and quasidefinite, efficient algorithms
can be used for computing a suitable permutation for which the factoriza-
tion of the permuted KKT matrix results in a sparse factor L [49] without
regard for the actual non-zero values appearing in the KKT matrix. The
LDLT factorization is therefore decomposed into two steps. In the first
step we compute a permutation matrix P and the sparsity pattern of the
factor L. The latter is referred to as the symbolic factorization and re-
quires only the sparsity pattern of the KKT matrix. In the second step,
referred to as the numerical factorization step, we determine the values
of nonzero elements in L and D. Note that we do not need to update the
symbolic factorization if the nonzero entries of the KKT matrix change
but the sparsity pattern remain the same.

Indirect method. We can find the solution of (5.22) by solving instead
the following linear system(

P + σI + ρATA
)
x̃k+1 = σxk − q +AT (ρzk − yk)

obtained by eliminating νk+1 from (5.22). We then compute z̃k+1 as
z̃k+1 = Ax̃k+1. Note that the coefficient matrix in the above linear system
is always positive definite. The linear system can therefore be solved with
an iterative schemes such as the conjugate gradient method [88, 137].
When the linear system is solved up to some predefined accuracy, we
terminate the method. We can also warm-start the method using the lin-
ear system solution at the previous iteration of ADMM to speed-up its
convergence.

5.3. Solution with ADMM 89

5.3.2 Final algorithm

By simplifying the ADMM iterations according to the previous discus-
sion, we obtain Algorithm 5. Steps 4, 5, 6 and 7 of Algorithm 5 are very
cheap to evaluate since they involve only vector addition and subtraction,
scalar-vector multiplication and projection onto a box. Moreover, they are
component-wise separable and can be easily parallelized. The most com-
putationally expensive part is solving the linear system in Step 3, which
can be done using direct or indirect methods as discussed in Section 5.3.1.

Algorithm 5
1: given initial values x0, z0, y0 and parameters ρ > 0, σ > 0, α ∈ (0, 2)
2: repeat

3: (x̃k+1, νk+1)←
[
P + σI AT

A − 1
ρI

] [
x̃k+1

νk+1

]
=
[
σxk − q
zk − 1

ρy
k

]
4: z̃k+1 ← zk + 1

ρ (νk+1 − yk)
5: xk+1 ← αx̃k+1 + (1− α)xk

6: zk+1 ← Π
(
αz̃k+1 + (1− α)zk + 1

ρy
k
)

7: yk+1 ← yk + ρ
(
αz̃k+1 + (1− α)zk − zk+1)

8: until termination condition is satisfied

5.3.3 Convergence and infeasibility detection

We show in this section that proposed algorithm generates a sequence of
tuples (xk, zk, yk) that in the limit satisfy the optimality conditions (5.4)–
(5.6) if the problem (5.1) is feasible, or provide primal or dual infeasibility
certificates otherwise.

It is a well known fact that ADMM for solving problems of the
form (5.12) is equivalent to Douglas-Rachford splitting applied to a spe-
cific problem reformulation [63, 86].

90 An Operator Splitting Solver for Quadratic Programs

In particular, as shown in [86] Algorithm 5 is equivalent to

(x̃k, z̃k)← argmin
(x̃,z̃):Ax̃=z̃

1
2 x̃

TPx̃+ qT x̃

+ σ
2 ‖x̃− x

k‖22 + ρ
2‖z̃ −

(
2Π(vk)− vk

)
‖22

(5.23)

xk+1 ← xk + α
(
x̃k − xk

)
(5.24)

vk+1 ← vk + α
(
z̃k −Π(vk)

)
(5.25)

where
zk = Π(vk) and yk = ρ

(
vk −Π(vk)

)
. (5.26)

Observe that iterates zk, yk satisfy the optimality condition (5.6) by
construction [14, Prop. 6.46].

We now show that the primal and dual residuals defined in (5.7) and
(5.8) converge to zero if the original problem is solvable. The solution
of the optimization problem in (5.23) satisfies the following optimality
conditions that are equivalent to (5.19)–(5.21),

(P + σI)x̃k + q − σxk + ρAT
(
z̃k − 2zk + vk

)
= 0 (5.27)

Ax̃k = z̃k. (5.28)

From a general convergence theory of Douglas-Rachford splitting (see,
e.g., [14, Cor. 27.4]) it follows that if problem (5.1) is solvable, then as
k →∞

xk − x̃k → 0 and zk − z̃k → 0. (5.29)
It follows from the above conditions and equality (5.28) that

Axk − zk = Ax̃k − z̃k︸ ︷︷ ︸
=0

+A (xk − x̃k)︸ ︷︷ ︸
→0

− (zk − z̃k)︸ ︷︷ ︸
→0

,

which means that the primal residual converges to zero, i.e.,

rkprim = Axk − zk → 0. (5.30)

Similarly, we have

Pxk + q +AT yk

= (P + σI)x̃k + q − σxk + ρAT
(
z̃k − 2zk + vk

)
+ (P + σI)(xk − x̃k) + ρAT (zk − z̃k),

5.3. Solution with ADMM 91

which taken together with (5.27) and (5.29) implies that the dual residual
converges to zero, i.e.,

rkdual = Pxk + q +AT yk → 0. (5.31)

Quadratic programs infeasibility. If problem (5.1) is primal and/or dual
infeasible, then the sequence of iterates (xk, zk, yk) generated by Algo-
rithm 5 will not necessarily converge. However, in the case C = [l, u], the
sequence

(δxk, δzk, δyk) := (xk − xk−1, zk − zk−1, yk − yk−1)

will always converge [11], where the δ notation is used to indicate the
difference between successive iterates. If the problem is primal infea-
sible, then δy := limk→∞ δyk will satisfy conditions (5.10), whereas
δx := limk→∞ δxk will satisfy conditions (5.11) if it is dual infeasible.
For more details we refer the reader to [11].

5.3.4 Termination criteria

We can define reasonable termination criteria for Algorithm 5 so that the
iterations will stop when either a primal-dual solution or a certificate of
primal or dual infeasibility is found up to some tolerance.

For feasible problems, a reasonable termination criterion for detecting
optimality is that the norms of the residuals rkprim and rkdual are smaller
than some tolerance levels εprim > 0 and εdual > 0 [32], i.e.,

‖rkprim‖∞ ≤ εprim and ‖rkdual‖∞ ≤ εdual. (5.32)

We set the tolerance levels as

εprim := εabs + εrel max{‖Axk‖∞, ‖zk‖∞}
εdual := εabs + εrel max{‖Pxk‖∞, ‖AT yk‖∞, ‖q‖∞}.

92 An Operator Splitting Solver for Quadratic Programs

Quadratic programs infeasibility. If C = [l, u], we check the following
conditions for primal infeasibility

‖AT δyk‖∞ ≤ εpinf‖δyk‖∞,
uT (δyk)+ + lT (δyk)− ≤ −εpinf‖δyk‖∞,

where εpinf > 0 is some tolerance level. Similarly, we define the following
criterion for detecting dual infeasibility

‖Pδxk‖∞ ≤ εdinf‖δxk‖∞, qT δxk ≤ −εdinf‖δxk‖∞,

(Aδxk)i


∈ [−εdinf , εdinf] ‖δxk‖∞ ui, li ∈ R
≥ εdinf‖δxk‖∞ ui = +∞
≤ −εdinf‖δxk‖∞ li = −∞,

for i = 1, . . . ,m where εdinf > 0 is some tolerance level. Note that ‖δxk‖∞
and ‖δyk‖∞ appear in the right-hand sides to avoid any division while
considering normalized vectors δxk and δyk in the termination criteria.

5.4 Problem data scaling

A known weakness of first-order methods is their inability to deal effec-
tively with ill-conditioned problems, and their convergence rate can vary
significantly when data are badly scaled.

Preconditioning is a common heuristic which aims to reduce the num-
ber of iterations in first-order methods [137, Chap 5],[82, 19, 141, 84, 85].
The optimal choice of preconditioners has been studied for at least two
decades and remains an active area of research [109, Chap 2],[90, Chap
10]. For example, the optimal diagonal preconditioner required to mini-
mize the condition number of a matrix can be found exactly by solving
a semidefinite program [29]. However, this computation is typically more
complicated than solving the original QP, and is therefore unlikely to be
worth the effort since preconditioning is only a heuristic to minimize the
number of iterations.

In order to keep the preconditioning procedure simple, we instead
make use of a simple heuristic called matrix equilibration [34, 164, 69, 52].

5.4. Problem data scaling 93

Our goal is to rescale the problem data to reduce the condition number
of the symmetric matrix M ∈ Sn+m defined as

M :=
[
P AT

A 0

]
. (5.33)

In particular, we use symmetric matrix equilibration by computing the
diagonal matrix S ∈ Sn+m

++ to decrease the condition number of SMS.
We can write matrix S as

S =
[
D

E

]
, (5.34)

where D ∈ Sn++ and E ∈ Sm++ are both diagonal. In addition, we would
like to normalize the cost function to prevent the dual variables from
being too large. We can achieve this by multiplying the cost function by
an appropriate scalar c > 0.

Preconditioning effectively modifies problem (5.1) into the following

minimize 1
2 x̄

T P̄ x̄+ q̄T x̄

subject to Āx̄ ∈ EC, (5.35)

where x̄ = D−1x, P̄ = cDPD, q̄ = cDq, Ā = EAD and EC := {Ez ∈
Rm | z ∈ C}. The dual variables of the new problem are ȳ = cE−1y. Note
that when C = [l, u] the Euclidean projection onto EC = [El,Eu] is as
easy to evaluate as the projection onto C.

The main idea of the equilibration procedure is to scale the rows of
matrix M so that they all have equal `p norm. It is possible to show
that finding such a scaling matrix S can be cast as a convex optimization
problem [9]. However, it is computationally more convenient to solve this
problem with heuristic iterative methods, rather than continuous opti-
mization algorithms such as interior-point methods. We refer the reader
to [34] for more details on matrix equilibration.

Ruiz equilibration. In this work we apply a variation of the Ruiz equili-
bration [147]. This technique was originally proposed to equilibrate square

94 An Operator Splitting Solver for Quadratic Programs

Algorithm 6 Modified Ruiz equilibration
initialize c = 1, S = I, δ = 0, P̄ = P, q̄ = q, Ā = A, l̄ = l, ū = u
while ‖1− δ‖∞ > εequil do

for i = 1, . . . , n+m do
δi ← 1/

√
‖M:i‖∞ . M equilibration

end for
P̄ , q̄, Ā, l̄, ū← Scale P̄ , q̄, Ā, l̄, ū using diag(δ)
γ ← 1/max{mean(‖P̄:i‖∞), ‖q̄‖∞} . Cost scaling
P̄ ← γP̄ , q̄ ← γq̄
S ← diag(δ)S, c← γc

end while
return S, c

matrices, showing fast linear convergence superior to other methods such
as the Sinkhorn-Knopp equilibration [154]. Ruiz equilibration converges
in few tens of iterations even in cases when Sinkhorn-Knopp equilibration
takes thousands of iterations [113]. The steps are outlined in Algorithm 6
and differ from the original Ruiz algorithm by adding a cost scaling step
that takes into account very large values of the cost. The first part is the
usual Ruiz equilibration step. Since M is symmetric, we focus only on
the columns M:i and apply the scaling to both sides of M . At each itera-
tion, we compute the∞-norm of each column and normalize that column
by the inverse of its square root. The second part is a cost scaling step.
Scalar γ is the current cost normalization coefficient, taking into account
the maximum between the average norm of the columns of P̄ and q̄. We
normalize the problem data P̄ , q̄, Ā, l̄, ū in place at each iteration using
the current values of δ and γ.

Scaled termination criteria. Although we rescale our problem in the
form (5.35), we would still like to apply the stopping criteria defined in
Section 5.3.4 to an unscaled version of our problem. The primal and dual
residuals in (5.32) can be rewritten in terms of the scaled problem as

rkprim = E−1(Āx̄k − z̄k), rkdual = c−1D−1(P̄ x̄k + q̄ + ĀT ȳk),

5.5. Solution polishing 95

and the tolerances levels as

εprim = εabs + εrel max{‖E−1Āx̄k‖∞, ‖E−1z̄k‖∞}
εdual = εabs + εrelc

−1 max{‖D−1P̄ x̄k‖∞, ‖D−1ĀT ȳk‖∞, ‖D−1q̄‖∞}.

Quadratic programs infeasibility. When C = [l, u], the primal infeasibil-
ity conditions become∥∥D−1ĀT δȳk

∥∥
∞ ≤ εpinf‖Eδȳk‖∞,

ūT (δȳk)+ + l̄T (δȳk)− ≤ −εpinf‖Eδȳk‖∞,

where the primal infeasibility certificate is Eδȳk. The dual infeasibility
criteria are

‖D−1P̄ δx̄k‖∞ ≤ cεdinf‖Dδx̄k‖∞, q̄T δx̄k ≤ −cεdinf‖Dδx̄k‖∞,

(E−1Āδx̄k)i


∈ [−εdinf , εdinf] ‖Dδx̄k‖∞ ui, li ∈ R
≥ εdinf‖Dδx̄k‖∞ ui = +∞
≤ −εdinf‖Dδx̄k‖∞ li = −∞,

where the dual infeasibility certificate is Dδx̄k.

5.5 Solution polishing

Operator splitting methods are typically used for obtaining a solution of
an optimization problem with a low or medium accuracy. However, even
if a solution is not very accurate we can often guess from an approximate
primal-dual solution which constraints are active at optimality. When
dealing with QPs of the form (5.2), we can obtain high accuracy solu-
tions from the final ADMM iterates by solving an additional system of
equations.

96 An Operator Splitting Solver for Quadratic Programs

Given a dual solution y of the problem, we define the sets of lower and
upper-active constraints

L := {i ∈ {1, . . . ,m} | yi < 0} , (5.36)
U := {i ∈ {1, . . . ,m} | yi > 0} . (5.37)

According to (5.9) we have that zL = lL and zU = uU , where lL denotes
the vector composed of elements of l corresponding to the indices in L.
Similarly, we denote by AL the matrix composed of rows of A correspond-
ing to the indices in L.

If the sets of active constraints are known a priori, then a primal-dual
solution (x, y, z) can be found by solving the following linear system P ATL ATU

AL
AU

 xyL
yU

 =

−qlL
uU

 , (5.38)

yi = 0, i /∈ (L ∪ U), (5.39)
z = Ax. (5.40)

We can then apply the aforementioned procedure to obtain a candidate
solution (x, y, z). If (x, y, z) satisfies the optimality conditions (5.4)–(5.6),
then our guess is correct and (x, y, z) is a primal-dual solution of problem
(5.3). This approach is referred to as solution polishing.

However, the linear system (5.38) is not necessarily solvable even if the
sets of active constraints L and U have been correctly identified. This can
happen, e.g., if the solution is degenerate, i.e., if it has one or more re-
dundant active constraints. We can make the solution polishing procedure
more robust by solving instead the following linear systemP + δI ATL ATU

AL −δI
AU −δI

 x̂ŷL
ŷU

 =

−qlL
uU

 , (5.41)

where δ > 0 is a regularization parameter with value δ ≈ 10−6. Since the
regularized matrix in (5.41) is quasi-definite, the linear system (5.41) is
always solvable.

5.6. Parametric programs 97

By using regularization, we actually solve a perturbed linear system
and thus introduce a small error to the polished solution. If we denote
by K and (K + ∆K) the coefficient matrices in (5.38) and (5.41), re-
spectively, then we can represent the two linear systems as Kt = g and
(K + ∆K)t̂ = g. To compensate for this error, we apply an iterative
refinement procedure [61], i.e., we iteratively solve

(K + ∆K)∆t̂k = g −Kt̂k (5.42)

and update t̂k+1 := t̂k + ∆t̂k. The sequence {t̂k} converges to the true
solution t, provided that it exists. Observe that, compared to solving the
linear system (5.41), iterative refinement requires only a backward and a
forward-solve, and does not require another matrix factorization.

5.6 Parametric programs

In application domains such as control, statistics, finance, problem (5.1)
is solved repeatedly for varying data. For these problems, usually referred
to as parametric programs, we can speed up the repeated OSQP calls by
re-using certain computations across multiple solves.

We distinguish between the case in which only the vectors or both
vector and matrices change between subsequent instances of (5.1). We
assume that the problem dimensions n and m and the sparsity patterns
of P and A are fixed.

Vectors as parameters. If the vectors q, l, and u are the only parameters
that vary, then the KKT coefficient matrix in Algorithm 5 does not change
across different instances of the parametric program. If a direct method
is used, we therefore perform and store its factorization only once before
the first solution and reuse it across all subsequent iterations. Since the
matrix factorization is computationally the most expensive step of the
algorithm, this approach reduces significantly the amount of time OSQP
takes to solve subsequent problems. This class of problems arises very
frequently in many applications, including linear MPC and MHE [143, 3],
lasso [168, 38], and portfolio optimization [31, 28, 122].

98 An Operator Splitting Solver for Quadratic Programs

Matrices and vectors as parameters. We separately consider the case in
which the values (but not the locations) of the nonzero entries of matrices
P and A are updated. In this case, in a direct method, we need to refac-
tor the matrix in Algorithm 5. However, since the sparsity pattern does
not change we need only to recompute the numerical factorization while
reusing the symbolic factorization from the previous solution as explained
in Section 5.3.1. This allows for a modest reduction in the computation
time. This class of problems encompasses applications such as nonlinear
MPC and MHE [53] and SQP [137].

Warm-starting. In contrast to interior-point methods, OSQP is easily
initialized by providing an initial guess of both the primal and dual so-
lutions to the QP. This approach is known as warm-starting and is par-
ticularly effective when the subsequent QP solutions do not vary signifi-
cantly, which is the case for most parametric programs applications. We
can warm-start the ADMM iterates from the previous OSQP solution
(x?, y?) by setting (x0, z0, y0)← (x?, Ax?, y?).

5.7 OSQP

We have implemented our proposed approach in the “Operator Splitting
Quadratic Program” (OSQP) solver, an open-source software package in
the C language. OSQP can solve any QP of the form (5.2) and makes
no assumptions about the problem data other than convexity. OSQP is
available online at

http://osqp.readthedocs.io.

Users can call OSQP from C, C++, Python, MATLAB and Julia, and
also via parsers such as CVXPY [51, 2], YALMIP [120] and JuMP [62].

To exploit the data sparsity pattern, OSQP accepts matrices in
Compressed-Sparse-Column (CSC) format [49]. We implemented the di-
rect linear system solution described in Section 5.3.1 using the SuiteSparse
package [4, 48] via a sparse permuted LDLT decomposition.

http://osqp.readthedocs.io

5.7. OSQP 99

import osqp

Create an OSQP object
m = osqp.OSQP ()

Solver initialization
m. setup (P, q, A, l, u, settings)

Generate code
m. codegen (’code ’, project_type =’Makefile ’,

parameters =’vectors ’)

Listing 5.1: A simple Python script for generating the code for a given parametric QP.

The default values for the OSQP termination tolerances described in
Section 5.3.3 are

εabs = εrel = 10−3, εpinf = εdinf = 10−4.

The default step-size parameters ρ, σ and the relaxation parameter α are
set to

ρ = 0.1, σ = 10−6, α = 1.6.
OSQP reports timing information including the total computation

time, the fraction spent on preprocessing operations such as scaling or
matrix factorization, and the fraction spent on the ADMM iterations. If
the solver is called multiple times reusing the same matrix factorization,
it will report only the ADMM solve time as total computation time.

5.7.1 Code generation

The OSQP implementation features a complete code generation frame-
work.

Listing 5.1 shows a simple Python script that generates code for a
given problem family. To generate a solver, the end-user must provide the
problem data and (optionally) configure the solver settings. The end-user
also has some flexibility to customize the solver prior to code genera-
tion. For instance, if the setting check_termination is set to a positive
integer N , then the solver will terminate when one of the termination

100 An Operator Splitting Solver for Quadratic Programs

include "osqp.h"
include " workspace .h"

int main(int argc , char ** argv) {

// Solve problem
osqp_solve (& workspace);

return 0;
};

Listing 5.2: A simple C program that loads the problem data from header file
workspace.h and solves the problem.

criteria is satisfied by checking every N iterations, or when the maximum
number of iterations is reached, whichever happens first. Checking the
termination criteria in is computationally expensive since it involves sev-
eral matrix-vector multiplications, and may slow down the code execution
considerably. If the user instead sets check_termination to 0, then the
algorithm will run for the maximum number of iterations without check-
ing the termination criteria. For the complete list of solver settings we
refer the reader to [156].

To generate the code, the codegen method is called with the specified
name of a directory where the generated code is stored. Using the keyword
argument project_type the user can define the build environment, e.g.,
Makefiles or several supported IDEs such as Eclipse, Apple Xcode or
Microsoft Visual Studio. The keyword argument parameters allows the
user to specify which of the data are parameters. The option vectors
assumes that only vectors q, l and u in problem 5.1 are parameters, while
the option matrices allows matrices P and A to be parameters as well.

Generated files. Figure 5.1 shows the tree structure of the generated
code. Directories <dir_name>/src/osqp and <dir_name>/include con-
tain the solver source code. The generated code is self-contained, has
small footprint and does not perform dynamic memory allocation, and
is thus suitable for embedded applications. CMakeLists.txt is a CMake
configuration file that manages the compilation process in a compiler- and

5.7. OSQP 101

<dir_name>
include

[*.h]
src

osqp
[*.c]

example.c
CMakeLists.txt

Figure 5.1: The tree structure of the generated code. The main program is stored in
example.c.

// Update linear cost
osqp_update_lin_cost (& workspace , & q_new);

// Update lower bound
osqp_update_lower_bound (& workspace , & l_new);

// Update upper bound
osqp_update_upper_bound (& workspace , & u_new);

Listing 5.3: Function calls in C for updating vectors of a parametric QP.

platform-independent manner [111].
The main program is stored in example.c whose content is shown

in Listing 5.2. The program loads the problem data from the header file
workspace.h, and solves the problem. For solving a different instance
of parametric problems, the problem data must be updated. Listing 5.3
provides illustrative function calls for updating vectors in problem 5.1; for
the complete documentation we refer the reader to [156].

102 An Operator Splitting Solver for Quadratic Programs

5.8 Numerical examples

5.8.1 Desktop

We benchmarked the desktop version of the OSQP solver against the
open-source interior-point solver ECOS [56], the open-source active-
set solver qpOASES [65], and the commercial interior-point solvers
GUROBI [92] and MOSEK [130].

We executed the OSQP solver with default settings and polishing dis-
abled. Note that the solution returned by the other solvers is with high
accuracy while OSQP returns a lower accuracy solution. Hence, runtime
benchmarks are not completely fair since OSQP might take more time
than interior-point methods if a high accuracy is required. On the other
hand, we used the direct light single-threaded linear systems solver SuiteS-
parse package [4, 48] where other solvers such as GUROBI and MOSEK
use more advanced multi-threaded linear system solvers.

We consider the returned primal-dual solution (x?, y?) by each
solver to be optimal if the following optimality conditions are satisfied
with εabs = εrel = 10−3,

‖(Ax? − u)+ + (Ax? − l)−‖∞ ≤ εprim,

‖Px? + q +AT y?‖∞ ≤ εdual,

‖min((y?)+, |u−Ax?|)‖∞ ≤ εslack,

‖min(−(y?)−, |Ax? − l|)‖∞ ≤ εslack,

where εprim and εdual are defined in Section 5.3.4 and εslack = εabs +
εrel‖Ax?‖∞.

All the experiments were carried out on a system with 32 2.2 GHz
cores and 512 GB of RAM, running Linux. The code for all the numerical
examples here presented is available online at

https://github.com/oxfordcontrol/osqp_benchmarks.

https://github.com/oxfordcontrol/osqp_benchmarks

5.8. Numerical examples 103

5.8.2 Benchmark problems

We considered QPs in the form (5.2) from 6 problem classes ranging from
standard random programs to applications in the areas of finance and
machine learning. For each problem class, we generated 10 different in-
stances for 20 different problem dimensions giving a total of 1200 problem
instances. We describe generation for each class in Appendix C. All in-
stances were either obtained from real data or from realistic non-trivial
random data.

Throughout all the problem classes, n ranges between 101 and 104, m
between 102 and 105, and N between 102 and 108.

Failure rates. Figure 5.2 describes the failure rates for all the solvers
across the generated problems. Note that when OSQP fails, the returned
solutions always satisfy the complementary slackness conditions and re-
main relevant for many practical applications where high accuracy is not
needed.

OSQP GUROBI MOSEK ECOS qpOASES
0

10

20

30

40

0% 0.71%
5.21% 6.93%

31.79%

Fa
ilu

re
ra
te

[%
]

Figure 5.2: Failure rates

Computation times. We show in Figure 5.7 the computation time across
all the problem classes for GUROBI and OSQP. Each problem class is

104 An Operator Splitting Solver for Quadratic Programs

represented using a different symbol. OSQP manages to achieve similar
timings as GUROBI across all the problem classes. In some cases such as
equality constrained QPs, it also outperforms GUROBI.

Performance profiles. Figure 5.3 compares the performance profiles [55]
of all the solvers tested. We define the performance ratio

rp,s := tp,s
mins tp,s

,

where tp,s is the time it takes for solver s to solve problem instance p.
If solver s fails at solving problem p, we set rp,s = ∞. The performance
profile plots the function fs : R→ [0, 1] defined as

fs(τ) = 1
np

∑
p

I≤τ (rp,s),

where I≤τ (rp,s) = 1 if rp,s ≤ τ or 0 otherwise. The value fs(τ) corresponds
to the fraction of problems solved within τ times from the best solver.
GUROBI outperforms all the solvers except for the very few cases when it
fails outright. OSQP is the second best solver with no failures reported for
these problem classes. ECOS and MOSEK manage to perform similarly
even though ECOS runs single threaded. qpOASES does not manage to
compute the optimal solutions of many instances since the number of
active constraints combinations is too large for an active-set method.

5.8.3 Polishing

We executed the OSQP solver also with polishing enabled. Polishing suc-
ceeded in 44.33 % of the times providing a high-accuracy solution with a
median of 1.07× computation time compared to the OSQP solution with-
out it. When polishing succeeds, the solution is as accurate or even more
than the one obtained with any other solver. Note that by decreasing the
tolerances εabs and εrel we can increase the percentage of times polishing
succeeds.

5.8. Numerical examples 105

1 10 100 1,000 10,0000

0.2

0.4

0.6

0.8

1

Performance ratio τ

R
at
io

of
pr
ob

le
m
s
so
lv
ed

OSQP
GUROBI
ECOS
MOSEK
qpOASES

Figure 5.3: Performance profiles

5.8.4 Warm-start and factorization caching

To show the benefits of warm-starting and factorization caching, we solved
a sequence of QPs with the data varying according to some parameters.

Lasso regularization path. We solved a lasso problem described in Ap-
pendix C.4 with varying λ in order to choose a regressor with good vali-
dation set performance.

We solved one problem instance with n = 50 features, m = 5000 data
points, and λ logarithmically spaced taking 100 values between λmax =
‖AT b‖∞ and 0.01λmax.

Since the parameters only enter linearly in the cost, we can reuse the
matrix factorization and enable warm-starting to reduce the computation
time as discussed in Section 5.6.

106 An Operator Splitting Solver for Quadratic Programs

Portfolio back test. Consider the portfolio optimization problem in Ap-
pendix C.3 with n = 3000 assets and k = 100 factors.

We run a 4 years back test to compute the optimal assets investment
depending on varying expected returns and factor models [28]. We solved
240 QPs per year giving a total of 960 QPs. Each month we solved 20 QPs
corresponding to the trading days. Every day, we updated the expected
returns µ by randomly generating another vector with µi ∼ N (0.9µ̂i, 0.1),
where µ̂i comes from the previous expected returns. The risk model was
updated every month by updating the nonzero elements of D and F ac-
cording to Dii ∼ U [0.9D̂ii, 0.1

√
k] and Fij ∼ N (0.9F̂ij , 0.1) where D̂ii

and F̂ij come from the previous risk model.
As discussed in Section 5.6, we exploited the following computations

during the QP updates to reduce the computation times. Since µ enters
only linearly in the constraint bounds, we can reuse the matrix factoriza-
tion and enable warm-starting. Since the sparsity pattern of of D and F
does not change during the monthly updates, we can reuse the symbolic
factorization and exploit warm-starting to speedup the computations.

Results. We show the results in Figure 5.4. For the lasso example, warm-
starting and factorization caching bring an average reduction in compu-
tation time of 13.31× going from 404.7 ms to 30.4 ms. In the portfolio
example, we obtain an average improvement of 8.44× from 277.9 ms to
32.9 ms.

5.8.5 Code generation

We benchmarked the generated solvers against the open-source code
generation tools CVXGEN [124], FiOrdOs [170], the open-source solver
qpOASES [65], and the commercial solver GUROBI [92]. All the solvers
were selected with their default options. We performed benchmarks on a
Macbook Pro 2.8GHz Intel Core i7 with 16GB RAM running Python 3.5.
The code to reproduce the examples is available at

https://github.com/oxfordcontrol/osqp_codegen_benchmarks.

https://github.com/oxfordcontrol/osqp_codegen_benchmarks

5.8. Numerical examples 107

Lasso Portfolio
0

100

200

300

400

C
om

pu
ta
tio

n
tim

e
[m

s]

OSQP warm-start
OSQP no warm-start

Figure 5.4: OSQP warm-start and factorization caching benchmarks.

Portfolio example Consider the portfolio optimization problem in C.3.
In order to obtain Pareto optimal portfolios, one needs to solve the re-
sulting QP for varying risk-aversion parameter γ. Since the parameter
appears only in the linear cost, one does not need to perform any matrix
factorization once the code is generated. Moreover, seeing that the opti-
mal solution does not significantly differ with small changes in γ, we can
make use of warm-starting and get a range of Pareto optimal portfolios
with minimal computational effort.

We generate 11 values of γ equally spaced on a logarithmic scale be-
tween 10−2 and 102. For each solver and each dimension n we solve the
generated problem for the 11 values of γ and average the execution time.

The results are shown in Figure 5.5. OSQP consistently outperforms all
other methods tested. CVXGEN is not able to generate the problem when
n > 120 since the resulting coefficient matrix has more than 4000 nonzero
elements. Note that CVXGEN, FiOrdOs and qpOASES exploit the simple
bounds on variable x, while OSQP and GUROBI use the formulation 5.1.
Table 5.1 shows the sizes of executable files generated by the OSQP solver
as a function of the number of assets. The size of the compiled code for
all the tested examples does not exceed 0.55 MB, which includes problem
data.

108 An Operator Splitting Solver for Quadratic Programs

100 200 300 400 50010−4

10−3

10−2

10−1

Number of assets n

T
im

e
[s]

OSQP
CVXGEN
FiOrdOs
GUROBI
qpOASES

Figure 5.5: Average time to solve the portfolio code generation example.

Table 5.1: Sizes of executable file of OSQP solver for the portfolio code generation
example.

Assets n Dimension N File size [kB]

50 235 46
80 496 58
100 720 70
120 984 82
150 1455 102
200 2440 142
250 3675 190
300 5160 246
400 8880 382
500 13600 554

5.9. Conclusions 109

0 100 200 300 40010−4

10−3

10−2

10−1

100

101

Number of parameters n

T
im

e
[s]

OSQP
GUROBI
qpOASES

Figure 5.6: Average time to solve the lasso code generation example.

Lasso regularization path. Consider the lasso problem described in Ap-
pendix C.4 for varying weighting parameter λ as for the desktop OSQP
examples in Section 5.8.4.

The results are shown in Figure 5.6. FiOrdOs does not converge within
50, 000 iterations for this problem type and CVXGEN is not able to gen-
erate code for n > 10. OSQP performs clearly better than GUROBI and
qpOASES for all the parameters considered. Note that qpOASES is not
able to find a solution in less than 10 seconds for n > 100.

5.9 Conclusions

In this Chapter, we presented a novel general-purpose QP solver based
on ADMM called OSQP.

Our method is very robust and needs only a single quasi-definite ma-
trix factorization before the first iteration. All the subsequent iterations

110 An Operator Splitting Solver for Quadratic Programs

are much cheaper and division-free because they involve only forward-
backward solves and vector-vector operations. OSQP is the first QP solver
based on first-order methods able to reliably detect infeasible problems
directly from the algorithm iterates. We showed that OSQP can outper-
form most state-of-the-art commercial and academic solvers in our pub-
licly available benchmark set of 1200 problems from different application
areas. Moreover, thanks to warm-starting and factorization caching our
algorithm can obtain around 10× speedups for parametric problems where
only part of the data change.

We also implemented a code generation feature for OSQP. After the
problem setup, our solver can generate tailored C code suitable for embed-
ded applications. This code requires no dynamic memory allocation and
it is library free. Since our algorithm is also division free, the generated
solver can be safely deployed into safety-critical systems. Code genera-
tion benchmarks showed that the embedded version of our solver is able
to outperform state-of-the-art code generation tools.

5.9. Conclusions 111

103 105 10710−4

10−1

102

C
om

pu
ta
tio

n
tim

e
[s]

Random QP

103 105 10710−4

10−1

102

Eq QP

103 105 10710−4

10−1

102

C
om

pu
ta
tio

n
tim

e
[s]

Portfolio

103 105 10710−4

10−1

102

Lasso

103 105 10710−4

10−1

102

Problem dimension N

C
om

pu
ta
tio

n
tim

e
[s]

SVM

103 105 10710−4

10−1

102

Problem dimension N

Huber

GUROBI OSQP

Figure 5.7: Computation time vs problem dimension for OSQP and GUROBI.

6
An MIQP Solver based on OSQP

6.1 Introduction

In this Chapter we develop a tailored branch-and-bound algorithm for
mixed-integer quadratic programs (MIQPs) by extending the OSQP al-
gorithm introduced in Chapter 5. Our algorithm exploits the particular
structure of the alternating direction method of multipliers (ADMM) it-
erations in OSQP by greatly reducing the computations involved with a
combination of offline precomputations and warm-starting.

113

114 An MIQP Solver based on OSQP

6.1.1 The problem

We are interested in solving the following MIQP

minimize 1
2x

TPx+ qTx

subject to l ≤ Ax ≤ u,

xi ∈ Z, ∀i ∈ I

(6.1)

with respect to the decision vector x ∈ Rn. The objective function is
defined by the symmetric positive semidefinite matrix P ∈ Sn+ and vector
q ∈ Rn, and the linear constraints by the matrix A ∈ Rm×n and vectors
l ∈ (R ∪ {−∞})m and u ∈ (R ∪ {+∞})m. The set I denotes the elements
of x constrained to take integer values, with p := |I| their total number.
We refer to the cost function of (6.1) as f(x) := 1

2x
TPx+ qTx.

Problems arising in many application domains can be expressed in the
form (6.1), including portfolio optimization [25, 27, 175], hybrid vehicle
control [131], regressor selection [22], hybrid model predictive control [17],
geolocalization [166], and power systems [80, 157].

Problem (6.1) is NP-hard in general since it includes mixed-integer
linear programs (MILPs) as a special case [134]. Nevertheless, in the last
two decades both hardware and software improvements have brought sev-
eral orders of magnitude improvements in computation time [26, 135].
However, state-of-the art-solvers are still not well-suited for solving
MIQPs on embedded platforms with low memory resources.

6.1.2 Solution methods

Exact solution. There are many methods for computing the optimal
solution to (6.1) exactly [118, 15]. When the set of discrete variables is
finite, the simplest approach is exhaustive-search, consisting of the enu-
meration of all possible integer combinations. The branch-and-bound algo-
rithm instead searches for the optimal solution over a tree by repetitively
partitioning the feasible region of integer variables into sub-domains. This
technique was first introduced in the 1960s [117] to solve MILPs, and later

6.1. Introduction 115

extended to mixed-integer nonlinear programs (MINLPs) [46]. Branch-
and-cut [163] methods combine the benefits of branch-and-bound with
cutting plane [89, 40] methods by iteratively introducing additional con-
straints to reduce the feasible region and thereby the number of nodes ex-
plored in the search tree. Other approaches such as outer approximation
or generalized Benders’ decomposition exploit the structure of the prob-
lem by alternating between the solution of a convex relaxation and of an
MILP containing the feasible region. However, branch-and-bound is gen-
erally considered the most efficient algorithm available to solve problems
of the form (6.1) [68], and is currently implemented in most commercial
solvers [92].

Heuristics. Several heuristics have been proposed to compute subopti-
mal solutions to problem (6.1) when there is insufficient time or comput-
ing power to solve it to optimality. The relax-and-round heuristic solves a
continuous relaxation of the MIQP and then rounds the fractional com-
ponents to their closest integers. More advanced heuristics such as the
feasibility pump [66] search for a solution by iteratively solving linear
programs (LPs). Recently, an ADMM-based heuristic [165] has shown
promising timing results relative to commercial solvers in computing good
quality feasible solutions. A similar method has been proposed together
with accelerated dual gradient projection [132]. The main downside of
these heuristics is that they are not guaranteed to find a good solution,
or even a feasible one.

6.1.3 Embedded systems

The main focus of this work is on embedded applications where the avail-
able time and computational power are both limited and the same problem
is solved many times for varying parameters. In these cases the problem
structure can be exploited to accelerate subsequent solutions.

A significant part of the research on embedded optimization to date
has focused on tools for convex optimization problems. Examples include
the solvers CVXGEN [124], ECOS [56] and FiOrdOs [170] and the com-

116 An MIQP Solver based on OSQP

mercial solver FORCES Pro [57]. Significant advances were also obtained
by applying first-order methods to solve optimal control problems on FP-
GAs [100, 146].

However, reliable numerical tools are still needed for solving MIQPs
on embedded systems. Some progress has been made in developing MIQP
solvers that are narrowly tailored to control applications such as hybrid
model predictive control, including those based on interior-point opti-
mization [71, 57], active set methods [7] and first-order methods [72].
In [16, 132], general branch-and-bound solvers based on nonnegative least
squares and dual gradient projection were presented whose performance is
competitive with commercial solvers in relatively small problems, but they
require strict convexity of the objective function. Hybrid model predictive
control (MPC) problems usually present a positive semidefinite matrix P
because some of the auxiliary integer variables are not penalized. Thus,
MIQP solvers requiring strict convexity of the objective function must
add a regularization term to P which on the one hand lowers the solution
accuracy and on the other slows down the inner quadratic program (QP)
solvers.

6.1.4 Our approach

We propose a new robust branch-and-bound algorithm that exploits the
particular structure of the OSQP [156] solver described in Chapter 5 to
efficiently compute the solutions to MIQPs of the form (6.1).

OSQP is suited for MIQPs due to its efficiency and robustness. It is
able to recognize primal and dual infeasible problems and does not require
any assumption on the problem data such as specific structure, positive
definiteness of the matrix P or linear independence of the constraints.
The OSQP solver is also easily warm-started and thus efficiently em-
ployed within branch-and-bound schemes so that only a limited number
of iterations are required to solve each subproblem.

The proposed MIQP algorithm extends OSQP by embedding it within
a branch-and-bound method. In addition, it exploits the particular OSQP
iterations to greatly reduce the numerical operations performed. The re-
sulting method requires only a single quasi-definite matrix factorization

6.2. Branch-and-bound solver based on OSQP 117

that is performed offline, cached and reused in all ADMM iterations of
all QP subproblems solved during branch-and-bound. Moreover, the same
factorization together with the current optimal solution can also be reused
in subsequent optimizations arising in parametric optimization. The ini-
tial factorization combined with warm-starting allows us to compute the
solutions very efficiently. Note that the same performance would not be
achievable by adopting other QP solvers in our branch-and-bound routine
because their inner iterations cannot be exploited in the same manner.
Moreover, other QP solution algorithms such as interior point methods,
cannot exploit warm-starting.

Our method is suitable for embedded systems since, following an initial
matrix factorization that can be performed offline, it does not require
dynamic memory allocation and is division-free.

We have prototyped the algorithm in Python interfacing to the fast
OSQP solver binaries. Numerical results show that our approach is faster
than commercial packages in solving small/medium-scale MIQPs arising
in embedded optimization.

6.2 Branch-and-bound solver based on OSQP

The branch-and-bound algorithm computes the optimal solution x? by
exploring the integer combinations in a tree [30],[15, Sec 3.1]. The search
is performed by repeatedly solving QPs of the form

minimize 1
2x

TPx+ qTx

subject to l ≤ Ax ≤ u,
xi ≤ xi ≤ xi, ∀i ∈ I.

(QP(x, x))

Each QP(x, x) is uniquely identified by the lower and upper bounds (x, x)
imposed on the integer variables. An example branch-and-bound tree is
shown in Figure 6.1.

The algorithm starts by solving the continuous relaxation of (6.1) at
the root node, i.e., QP(−∞,∞), obtaining a solution x̃ and a lower bound
f(x̃). If QP(−∞,∞) is primal or dual infeasible, then MIQP (6.1) is also
primal or dual infeasible, respectively. If the solution satisfies all of the

118 An MIQP Solver based on OSQP

QP(−∞,+∞)

QP(−∞, 2)

QP(−∞, 1) QP(2, 2)

QP(3,+∞)

Figure 6.1: Example of branch-and-bound tree with one integer variable.

integer restrictions it is said to be integer feasible and is also a global
solution of (6.1). Otherwise, the solution is said to be fractional. In that
case, the algorithm searches over a tree whose nodes are subproblems
of the form QP(x, x) and whose edges are the branching decisions. It
is typically unnecessary to search over all possible integer combinations,
and the popularity of branch-and-bound is due in part to the fact that
many subtrees can typically be pruned before exploration. We next briefly
describe the branching and pruning process.

Given a problem QP(x, x) with fractional solution, we pick a non-
integer element x̃i, i ∈ I, and branch creating left (−) and right (+) child
nodes with the same variable bounds (x, x) as the parent. Then we set

(x−i , x−i) = (xi, bx̃ic) (x+
i , x

+
i) = (dx̃ie, xi). (6.2)

The lower bounds of both children are initialized with the lower bound of
their parent, so that lower bounds are monotonically non-decreasing with
tree depth. In practice, we do not maintain the whole tree in memory but
keep only the leaves in the heap H.

Pruning rules allow us to discard tree branches based on the optimality
and feasibility of the current node QP(x, x). Let us denote the upper
bound on the objective value as U and set it to∞ at initialization. Pruning
of branches occurs in three cases:

• If the current node is infeasible, then we prune the subtree since it
contains only infeasible problems.

6.2. Branch-and-bound solver based on OSQP 119

• If the optimal value f(x̃) of the current node is worse than the
current upper bound U , i.e., f(x̃) > U , then we prune the node
since any integer solution in the subtree will not be better than the
current best one.

• If the solution x̃ to the current node is integer feasible, then we can
prune the entire subtree because it cannot contain better feasible
solutions than x̃. Moreover, if it improves the current upper bound,
that is f(x̃) < U , then we can update the optimal solution and the
upper bound with x? ← x̃ and U ← f(x̃).

Since a good upper bound U allows the pruning of unnecessary
branches, it is useful to find a good quality feasible solution as quickly as
possible. In order to do so, at each iteration we select a vector x̂ whose
elements x̂i i ∈ I are integer from the solution x̃ of the current node. If
x̂ satisfies the linear constraints l ≤ Ax̂ ≤ u, then it is feasible for the
original problem (6.1). If, in addition, f(x̂) improves the current upper
bound U , we can update the best known solution and the upper bound
with x? ← x̂ and U ← f(x̂).

The complete algorithm description can be found in Algorithm 7. Note
that if the QP solver used to solve the subproblems is able to generate
dual-feasible solutions, one can stop solving the relaxation prematurely as
soon as the corresponding dual cost is larger than the best known upper
bound U [68, 16, 132]. In the current form, OSQP is not able to provide
dual feasible solutions at each iteration, but only at convergence, i.e.,
when the dual feasibility condition is satisfied. Hence, we cannot exploit
premature pruning at the moment.

6.2.1 Strategic decisions

Algorithm 7 possesses three degrees of freedom that can substantially
change its performance depending on the problem instance.

Tree exploration. The way we pick the next node QP(x, x) to explore
from the heap H determines how the tree exploration progresses. The two

120 An MIQP Solver based on OSQP

Algorithm 7 MIQP branch-and-bound
initialize U ←∞, H ← QP(−∞,∞)
while H 6= ∅ do

pick and remove QP(x, x) from H
x̃, f(x̃)← solve QP(x, x)
if QP(x, x) is infeasible then

prune current node
else if f(x̃) > U then

prune current node
else if x̃ is integer feasible then

U ← f(x̃), x? ← x̃
fathom nodes in H with lower bound > U

else
choose integer x̂ from x̃
if x̂ is feasible and f(x̂) < U then

U ← f(x̂), x? ← x̂
fathom nodes in H with lower bound > U

end if
end if
branch node QP(x, x)

end while

6.2. Branch-and-bound solver based on OSQP 121

most common strategies are best-bound and depth-first [15]. Best-bound
always chooses the node with the best lower bound, usually resulting in
a small number of nodes explored. Its drawback is that large amounts
of memory are required in general because, in the worst-case, the whole
tree is searched before a feasible solution is found. In contrast, depth-first
always picks the deepest node (or one of the deepest nodes) in a tree,
with the advantage that the heap H is kept as small as possible. However,
depth-first search typically visits more total nodes than the best-bound
approach. In this work we use a hybrid approach where depth-first is
carried out until a feasible solution is found. Then best-bound is used to
minimize the number of visited nodes.

Branching variable selection. When branching we must choose amongst
the candidate fractional elements of x̃ to determine bounds for the new
nodes as in (6.2). The goal is to maximize the increase in the objective
function lower bound with the branching so that it becomes easier to
fathom nodes in the subtrees. In this work we use a maximum fractional
part branching rule, i.e., we select the variable with maximum integer vio-
lation [35, 68]. More sophisticated branching heuristics like strong branch-
ing or pseudocost branching [15] can be chosen to predict the increase in
the value function in the child nodes, but it is not clear that they improve
the practical performance [68, 91] and we do not employ them.

Compute an integer solution. Each time we compute a relaxed solu-
tion x̃, we also search for an integer feasible solution x̂ with the help of
a heuristic. The main idea is to quickly find good upper bounds allow-
ing us to prune as many nodes as possible [15]. We use nearest-neighbor
rounding by computing a simple rounding of the fractional elements of x̃.
However, the rounded vector produced by this method may not be fea-
sible, and more sophisticated heuristics can be applied to ensure that a
feasible solution will be found; for example MILP-based rounding [133] or
the feasibility pump [66]. We do not to use these heuristics because they
require solving several LPs that might be more expensive than just pro-
gressing in the tree search, since the required matrix factorization would

122 An MIQP Solver based on OSQP

be different than the on in Algorithm 5. Note that in the case of purely
binary variables, tailored schemes such as sum-up-rounding could also be
applied [151].

6.3 Exploiting the OSQP solver

In order to solve the subproblems in Algorithm 7, we require an efficient
QP solver able to both compute optimal solutions reliably and to detect
infeasibility. The OSQP solver presented in Chapter 5 not only satisfies
all the requirements to be deployed in our branch-and-bound scheme, but
it can be fully integrated into Algorithm 7 to minimize the operations
involved using factorization caching and warm-starting.

Factorization caching. The OSQP iterations are summarized in Algo-
rithm 5. The most expensive step is the linear system solution that, if the
problem size is not very large, is performed using direct methods. Direct
methods consist in two steps: a computationally expensive matrix factor-
ization and easy to perform forward-backward solves. Since the matrix in
Algorithm 5 does not change throughout the iterations, we can perform
the factorization only once at the beginning of the algorithm to signifi-
cantly reduce the total computations. This is already part of the OSQP
implementation in Section 5.7.

We can exploit these operations even further in Algorithm 7. The
linear system matrix does not change as it does not depend on the bounds
x and x of the subproblems defining each node of the branch-and-bound
tree. It must therefore be factorized only once at the root node. This
factorization is then cached and used in all subsequent ADMM iterations.
In addition, it does not change when we solve problem (6.1) for varying
vectors q, l, u.

Warm-starting. To reduce the number of iterations required to solve
each QP we introduce warm-starting. At each node we warm-start the

6.4. Numerical results 123

OSQP iterates using the parent node solution. Moreover, if we solve sev-
eral similar MIQPs, we initialize Algorithm 7 with the solution of the
previous MIQP if it is feasible.

Even though other algorithms such as active set methods can be warm-
started and are currently used in most MIQP algorithms [68], they cannot
exploit offline factorization as our method because they do not solve the
same linear system at each iteration.

6.4 Numerical results

Our algorithm, named miOSQP, has been implemented in Python and
interfaced to the OSQP solver compiled binaries. Timing benchmarks are
compared to GUROBI [92] with the default options on a Macbook Pro
2.8GHz Intel Core i7 with 16GB RAM running Python 3.5. For a fair
comparison both algorithms are executed single-threaded. Note that there
is a variety of other efficient MINLP solvers available commercially and for
free. However we compared our method to GUROBI since it is currently
the standard reference in performance offering a specific solver for MIQPs.
Other solvers such as SCIP [1] tackle more general MINLPs problems.
Therefore, including them in the comparison would be unfair. The code
together with the examples is available at

https://github.com/oxfordcontrol/miosqp.

6.4.1 Random MIQPs

We generated random MIQPs with varying dimensions n,m and number
of integer variables p. The entries of P are computed as P = MMT

where M ∈ Rn×n is generated from the uniform distribution U(0, 1) with
70% nonzero elements and the linear part of the cost q with the normal
distribution N (0, 1). The constraints are generated as A ∼ U(0, 1), l ∼
U(0, 1)− 2 and l ∼ U(0, 1) + 2. Each problem instance is solved 10 times,
from which we compute both the average and the maximum execution
times together with the standard deviation. The results are shown in

https://github.com/oxfordcontrol/miosqp

124 An MIQP Solver based on OSQP

Table 6.1: Timings in ms for random MIQPs with varying n,m and q

miOSQP GUROBI

n m p tavg tstd tmax tavg tstd tmax

10 5 2 1.45 0.17 1.72 4.20 6.20 22.37
10 100 2 4.10 1.59 7.15 10.82 2.54 15.60
50 25 5 5.34 1.51 8.18 19.57 0.98 21.80
50 200 10 51.09 37.89 159.40 107.04 18.15 157.61
100 50 2 5.67 1.80 8.72 50.90 10.71 69.58
100 200 15 70.76 58.38 238.63 254.85 49.42 383.26
150 100 5 36.46 15.32 67.20 263.75 38.02 343.17
150 300 20 198.37 97.91 429.43 924.46 193.36 1316.03

Table 6.1. miOSQP outperforms GUROBI in all cases with up to 9x
improvements.

6.4.2 Power converter control

We consider the hybrid system model of a three-level voltage source con-
verter driving a medium-voltage induction machine described in Chap-
ter 4 [157]. The system dynamics can be described as a discrete-time
linear system with integer inputs (4.15). We would like to compute the
optimal inputs so that the internal currents track the reference sinusoids.
We can model this problem as in (4.16) which can be reformulated as an
integer QP (4.21).

Since the computational cost grows exponentially with the horizon
length, in Chapter 4 we approximated the infinite horizon cost using the
approximate dynamic programming (ADP) approach to shorten the hori-
zon length to T = 1 or 2. Numerical examples in Section 4.7 allows good
control performance while keeping the number of input combinations man-
ageable to enable exhaustive search. This technique becomes prohibitive
for longer horizons because the number of input combinations grows ex-
ponentially with T . By using our proposed approach we show that the

6.5. Conclusions 125

computation time can be kept in the ms time-scale even with longer hori-
zons while still benefiting from the good predictive behavior of ADP.

We performed closed-loop simulations for horizons T = 1, 2, . . . , 5 for
3 periods each; one for reaching the steady state behavior and two for the
actual simulation. Each period has 800 time steps. The computation times
are averaged over all the solutions for each simulation. Both GUROBI
and our algorithm were warm-started with the solution at the previous
time step. The timings are shown in Figure 6.3. The current and input
behaviors are shown in Figure 6.2.

The timing comparison shows a consistently better behavior of
miOSQP compared to GUROBI: up to more than 2× improvements for
shorter horizons and still better performance for longer ones. Note that
the problem has 27 integer feasible input combinations per stage which,
for horizon 5 amounts to a total of 14, 348, 907 worst case number of nodes
to be evaluated. However, miOSQP always computes the optimal input
after searching only a few hundred nodes. Note that without our offline
factorization, the solver would require one factorization for each node and
the solution time would greatly increase. Moreover, thanks to the warm-
starting capabilities of OSQP only 80 iterations are required on average
to solve each individual QP.

6.5 Conclusions

We proposed a new MIQP algorithm based on branch-and-bound com-
bined to the OSQP solver. Thanks to factorization caching and warm-
starting, our method is able to efficiently compute globally optimal solu-
tions. Numerical examples showed that our method with a simple, high-
level implementation shows better timings than commercial solvers for
small to medium-size problems arising in embedded applications.

126 An MIQP Solver based on OSQP

0 5 10 15 20

Time [ms]

−1.0

−0.5

0.0

0.5

1.0

0 5 10 15 20

−1

0

1

0 5 10 15 20

−1

0

1

0 5 10 15 20

Time [ms]

−1

0

1

Figure 6.2: Power converter simulation results with miOSQP solver and N = 3

6.5. Conclusions 127

1 2 3 4 5

Horizon length T

10−3

4× 10−4

6× 10−4

2× 10−3

T
im

e
[s

]

GUROBI

miOSQP

Figure 6.3: Average power converter MIQP solution time comparison between miOSQP
and GUROBI

7
Discussion and Outlook

Many applications in process engineering, computer science, operations
research, economics, chemistry and physics involve mixed-integer optimal
control problems. Solving these problems is hard because of the explosion
of feasible combinations introduced by the integer variables. Despite the
recent tremendous hardware and algorithmic improvements in mathemat-
ical optimization, we are still not able to compute the optimal solutions
of medium-sized mixed-integer optimization problems within the seconds
time-scale. This limitation can become an issue when dealing with real-
time applications such as model predictive control (MPC) where we have
to compute the optimal solutions reliably within a certain amount of time.
This thesis investigated the development of a variety of new algorithms
for mixed-integer programming focusing on real-time optimal control of
fast dynamical systems.

129

130 Discussion and Outlook

7.1 Approximations to reduce complexity

In the first part of this thesis we discussed approximations to make the
integer optimization problems tractable. These techniques gave great re-
ductions in complexity and computation time at the price of restricting
the applicability to certain classes of problems.

7.1.1 Optimal switching times for switched dynamical systems

In Chapter 2 we described a reformulation that simplifies the decisions
by removing integer variables. In particular, we focused on the switch-
ing time optimization problem: given a sequence of continuous dynamics,
when is the optimal time to switch between them? In the recent literature,
this problem has been tackled with iterative optimization methods. How-
ever, these approaches involve heavy computations consisting of several
numerical integrations just to obtain the cost function and its derivatives.
Thus, even though no integer variables are present, it becomes impractical
to implement these techniques in real-time applications. To address this
issue, we introduced an efficient method to solve these optimization prob-
lems. We developed easily computable expressions for the cost function,
the gradient and the Hessian of the switching time optimization problem
by sharing the most expensive computations between them. Moreover, in
the case of linear switched systems we showed that most of the computa-
tions can be parallelized, thereby reducing the required computation time
to just a few milliseconds. We implemented our technique in the Julia
package SwitchTimeOpt able to outperform state-of-the-art approaches
with up to two orders of magnitude computation time improvements.

Future work. There are several future directions to investigate. First of
all, many computations can be parallelized. The state transition matrices
in (2.22) can be computed in parallel for every different τi. Moreover,
given the associative nature of the matrix products, parallel reduction
techniques like the prefix-sum [116] could be implemented to reduce the
computation time. In the case of linear dynamics, since there is no need to

7.1. Approximations to reduce complexity 131

sequentially propagate the state before the linearizations, the matrix ex-
ponentials could be computed completely in parallel. Note that the Julia
language already includes several functions to parallelize computations on
standard CPUs. We also believe that our approach could benefit greatly
from implementations of these parallelizations on graphics processing unit
(GPU) or field-programmable gate array (FPGA) architectures. Another
research direction is to develop a tailored solver to our method to exploit
its structure. For example, interior-point methods such as IPOPT exploit
line search routines which could end up evaluating the cost function sev-
eral times increasing the computation time due to the matrix exponentials
computations at each different point. An optimization algorithm taking
into account the most expensive computations in our subroutines could
greatly improve the performance. Finally, the current work could be ex-
tended to more general problem formulations such as optimal control with
state constraints.

7.1.2 Approximate dynamic programming for integer optimal control

In Chapters 3 and 4 we investigated a new method to approximate and
solve very rapidly hybrid MPC for linear systems with integer inputs. We
reduced the computational complexity by shrinking the long control hori-
zon to very few decision steps and by approximating the tail cost offline.
Using the framework of approximate dynamic programming (ADP), we
computed a quadratic value function underestimator by solving a semidef-
inite program (SDP). In this way, the problem can be greatly simplified
while maintaining good control performance. In addition, we introduced
a new way to penalize the input effort usually referred to as the input
switching frequency. State-of-the-art formulations penalize the input ef-
fort indirectly by reducing the input switchings over the controller horizon.
When the horizon is very short, the number of input switchings does not
provide a reliable estimate of the input effort. In this work we instead
embedded a switching frequency estimator into the state dynamics and
we penalized the deviations. With this technique the cost function tuning
becomes much easier while the input effort can be better approximated
and penalized.

132 Discussion and Outlook

We applied this method to a variable-speed drive system consisting
of a voltage source inverted connected to a medium-voltage induction
machine. The system was modeled as a linear system with switched three-
phase input with equal switching steps for all phases.

We implemented our algorithm on a small size Xilinx Zynq FPGA
(xc7z020) in fixed-point arithmetic. With processor-in-the-loop (PIL)
tests, we showed that our approach can comfortably run at very high
speeds satisfying the sampling time requirements of 25 µs. Moreover, with
this method we could also outperform state-of-the-art approaches in terms
of performance indices such as the total harmonic distortion (THD).

Future work. Our method can also be applied to more complex schemes
such as modular multilevel converters (MMCs) [144]. While it is possible
to derive a complete MMC model that could be used in an MPC approach,
the number of switching levels per horizon stage increases exponentially
with the number of converter levels. As stated in [81], the long horizon pre-
dictive power of MPC is expected to be even more beneficial with MMCs.
We believe that our method, making use of short computing horizons and
long predictions using an approximate value function could be applied
effectively to MMCs with more levels. This is because it is still possible to
evaluate the multilevel feasible switching combinations on commercially
available FPGAs over very short horizons within the required sampling
time.

From the system design, there are several symmetries in the model
that could be exploited to increase the controller horizon without requir-
ing more computational power. Regarding the frequency estimation, other
filters with different orders could be implemented and their parameters
chosen optimally by solving an optimization problem instead of perform-
ing manual tuning. Moreover, it would be interesting to benchmark other
ADP tail cost basis functions (e.g., higher order polynomials or B-splines)
to understand which ones best approximate the infinite horizon tail cost
and produce the best overall control performance.

7.2. Exact solution algorithms 133

7.2 Exact solution algorithms

In this part we directly tackled mixed-integer optimization problems by
developing a new algorithm based on branch-and-bound. We first devel-
oped a new efficient and robust quadratic program (QP) solver and then
embedded it into a branch-and-bound routine eliminating unnecessary
computations.

7.2.1 The OSQP solver

In Chapter 5 we presented the OSQP solver, a new QP solver written in
C and based on the alternating direction method of multipliers (ADMM).
OSQP is very robust and requires no assumptions on problem data apart
from convexity. The only expensive operation involved is a single quasi-
definite matrix factorization that we can compute just once before the
ADMM iterations. In this way all the iterations become cheap to com-
pute and division free. OSQP can exploit warm-starting and factorization
caching in parametric problems where only parts of the data change. In
addition, OSQP is the first QP solver based on first-order methods ca-
pable of detecting infeasible problems. We benchmarked our open-source
C implementation against state-of-the-art solvers on a data set of 1200
problems from different application areas. Our method was able to out-
perform most other solvers with just cold starting. We also showed that
warm-starting and factorization caching can bring around 10× speedups
in the solution of parametric problems. Chapter 5 also shows a code gen-
eration feature we included in OSQP. After the setup phase is performed,
we can generate tailored embeddable C code that is library-free, division
free and requires no dynamic memory allocation. Thus, it is well suited
for embedded applications on safety-critical systems. We benchmarked the
code generated version of OSQP against many state-of-the-art embedded
solvers showing its the better performance and reliability.

Future work. This solver is still actively developed and will be ex-
tended to several applications, benchmarks and additional interfaces.

134 Discussion and Outlook

Even though we showed the performance on various numerical bench-
marks, there are many more test cases where it would be interesting to
compare it to state-of-the-art solvers. Examples include other test libraries
for QPs and linear programs (LPs) [126]. Another interesting benchmark
is the infeasible problems detection speed of OSQP compared to other
solvers implementing primal-dual interior point or active set methods.

We can extend the OSQP algorithm and implementation in several
directions. First of all, we can exploit CPU parallelization. The most
expensive part, which is the linear system solution, can be performed
with different dedicated software. There are many efficient linear systems
solvers freely available such as MUMPS [5] or MKL Pardiso [43]. They
exploit multi-threading and advanced pivoting algorithms to speedup the
solution. Linking OSQP to these linear systems solvers could bring huge
computational gains for solving medium to large scale QPs. Second, differ-
ent hardware could be exploited to parallelize the algorithm. GPU archi-
tectures are designed to massively parallelize linear algebra computations.
When solving very large scale QPs with millions of variables, factorizing
the linear system matrix becomes prohibitive. In these cases, indirect solu-
tion methods become more favorable since they involve only matrix-vector
multiplications that can be greatly parallelized. By adopting indirect lin-
ear system solution methods such as the conjugate gradient method [88]
on a GPU, we would be able to tackle very large scale applications that
are inapproachable from any existing academic or industrial QP solver
working just on CPUs.

Finally, even though problem data scaling works very well for our cur-
rent OSQP implementation, there are cases of hard QPs that require a
more accurate tuning of the solver step-size ρ. Data sensitivity is a com-
mon issue with first-order methods compared to interior-point methods.
One approach to deal with this issue is to design acceleration schemes to
speedup the convergence such as [86, 167]. Alternatively, we can design
a data-driven automatic parameter selection. This can be achieved by
solving numerous problems from different classes and fitting a function
providing a good ρ value depending on data features such as properties
of the matrices, distance of the constraints bounds, and so on.

7.2. Exact solution algorithms 135

7.2.2 An MIQP solver based on OSQP

In Chapter 6 we extended the OSQP solver to solve mixed-integer
quadratic programs (MIQPs) by developing a tailored branch-and-bound
algorithm. OSQP is particularly suited for MIQPs because of its effi-
ciency and robustness. It is also able to detect infeasible problems which
are very common in branch-and-bound routines. We obtained substantial
computational gains from using OSQP due to factorization caching and
warm-starting capabilities. By caching and reusing the matrix factoriza-
tion at the root node of the search tree, we can save many unnecessary
computations. Moreover, by warm-starting each child node with the opti-
mal solution of its parent, we can reduce the number of ADMM iterations
required. The proposed branch-and-bound algorithm can also be warm-
started and the matrix factorization reused in subsequent optimizations
arising in parametric optimization problems from, e.g., hybrid MPC. We
prototyped the algorithm in Python, interfacing it to the compiled OSQP
binaries. Numerical benchmarks showed that our method with a simple
high-level implementation is faster than commercial packages in solving
small to medium-scale MIQPs.

Future work. The algorithm still has considerable scope for performance
improvement. A parallelized branch-and-bound C implementation will
greatly reduce the Python overhead. Moreover, further computation time
reductions could be obtained by using premature node pruning. If the
solver is able to provide dual-feasible solutions, we can stop solving the
current relaxation before convergence as soon as the dual cost is larger
than the best known upper bound [68, 16, 132]. We believe that, by ob-
taining a dual feasible solution from the OSQP iterates, we can apply
premature node pruning to reduce the total number of ADMM iterations
required. Additional methods such as advanced branching techniques to-
gether with cutting planes generation and heuristics can also improve the
overall performance by reducing the number of visited nodes.

Notation

Sets

R Real numbers.
Rn Real n-vectors (n× 1 matrices).
Rm×n Real m× n matrices.
R+, R++ Nonnegative, positive real numbers.
Z Integers.
Z+,Z++ Nonnegative, positive integers.
Sn Symmetric n× n matrices.
Sn+, Sn++ Symmetric positive semidefinite, posi-

tive definite, n× n matrices.

Norms

‖ · ‖ A norm.
‖x‖2 Euclidean (`2-) norm of vector x.
‖x‖∞ Infinity norm of vector x.

137

138 Acronyms

Vectors and matrices

1 Vector with all components one.
I Identity matrix.
XT Transpose of matrix X.
trX Trace of matrix X.
diag(x) Diagonal matrix with diagonal entries

x1, . . . , xn.
blkdiag(A,B, . . .) Block diagonal matrix with A,B, . . .

matrices as blocks.
A⊗B Kronecker product between matrices A

and B.

Acronyms

ADMM alternating direction method of multi-
pliers.

ADP approximate dynamic programming.
FIR finite impulse response.
FPGA field-programmable gate array.
GPU graphics processing unit.
IIR infinite impulse response.
ILS integer least-squares.
LMI linear matrix inequality.
LP linear program.
LTI linear time-invariant.
MHE moving horizon estimation.
MILP mixed-integer linear program.
MINLP mixed-integer nonlinear program.
MIQP mixed-integer quadratic program.
MMC modular multilevel converter.
MPC model predictive control.

Acronyms 139

PI proportional-integral controller.
PIL processor-in-the-loop.
pu per-unit system.
QP quadratic program.
SDP semidefinite program.
SOCP second-order cone program program.
SQP sequential quadratic programming.
SVM support vector machine.
THD total harmonic distortion.
VHDL VHSIC hardware description language.

Appendices

A
Switching Time Optimization Proofs

A.1 Proof of Theorem 2.1

A.1.1 Auxiliary lemmas

In order to prove Theorem 2.1, we first require the following two lemmas:

Lemma A.1 (State transition matrix derivative). Given two switching times
τa, τi+1 with τa ≤ τi+1 such that τi+1 does not coincide with any point
of the background grid and the switching interval δi, the first derivative
of the state transition matrix between τa and τi+1 with respect to δi can
be written as

∂Φ(τi+1, τa)
∂δi

= Anii Φ(τi+1, τa). (A.1)

Note that in the case when τi+1 coincides with a fixed-grid point, the
derivative is not defined since at τi+1 +ε a new linearization is introduced,

143

144 Switching Time Optimization Proofs

breaking the smoothness of the state transition matrix. Our derivations
still hold in that case by considering, instead of the gradient, the subgra-
dient equal to the one-sided limit of the derivative from below.

Proof. We can rewrite Φ(τi+1, τa) using Definition 2.1 as

Φ(τi+1, τa) = e
A
ni
i

(
δi−
∑ni−1

p=0
δp
i

) (ni−1∏
p=0

eA
p
i
δp
i

)
Φ(τi, τa), (A.2)

by using the relation

δi =
ni∑
j=0

δji . (A.3)

Taking the derivative of (A.2) we obtain:

∂Φ(τi+1, τa)
∂δi

= Anii e
A
ni
i

(
δi−
∑ni−1

p=0
δp
i

) (ni−1∏
p=0

eA
p
i
δp
i

)
Φ(τi, τa)

= Anii Φ(τi+1, τa),

(A.4)

where we made use of the properties of the matrix exponential eX(a+b) =
eXaeXb and ∂

∂ce
Xc = XeXc with X ∈ Rnx and a, b, t ∈ R. �

The matrices Si and their first derivatives play an important role in
the proof and in the rest of the Chapter. We next derive the first derivative
of Si:

Lemma A.2 (Derivative of Matrices Si). Given the switching times τa and
τi+1 so that τa ≤ τi+1 and that τi+1 does not coincide with any point of
the background grid and the interval δi, the derivative of Sa with respect
to δi is

∂Sa
∂δi

= Φ(τi+1, τa)TCiΦ(τi+1, τa). (A.5)

Proof. From (2.12), we can write the derivative as

∂Sa
∂δi

= ∂Pa
∂δi

+ ∂Fa
∂δi

. (A.6)

Let us analyze the two components separately.

A.1. Proof of Theorem 2.1 145

First part. We decompose the part defined by Pa as

∂Pa
∂δi

= ∂

∂δi

(∫ Tδ

τa

Φ(t, τa)TQΦ(t, τa)dt
)

= ∂

∂δi

(∫ τi

τa

Φ(t, τa)TQΦ(t, τa)dt
)

+ ∂

∂δi

(∫ τi+1

τi

Φ(t, τa)TQΦ(t, τa)dt
)

+ ∂

∂δi

(∫ Tδ

τi+1

Φ(t, τa)TQΦ(t, τa)dt
)

= ∂

∂δi

(∫ τi+1

τi

Φ(t, τa)TQΦ(t, τa)dt
)

+ ∂

∂δi

(∫ Tδ

τi+1

Φ(t, τa)TQΦ(t, τa)dt
)
.

(A.7)

Note that the integral from τa to τi does not depend on δi and its deriva-
tive is zero. Taking first the leftmost term in (A.7), the integral from τi
to τi+1 can be written as

∂

∂δi

(∫ τi+1

τa

Φ(t, τa)TQΦ(t, τa)dt
)

= Φ(τi, τa)T ∂

∂δi

(∫ τi+1

τi

Φ(t, τi)TQΦ(t, τi)dt
)

Φ(τi, τa)

= Φ(τi, τa)T ∂

∂δi

(∫ δi

0
Φ(η + τi, τi)TQΦ(η + τi, τi)dη

)
Φ(τi, τa)

= Φ(τi+1, τa)TQΦ(τi+1, τa), (A.8)

where in the second equality we applied the change of variables η = t− τi
and in the third equality the fundamental theorem of calculus. Next taking
the rightmost term in (A.7), the integral from τi+1 to Tδ can be obtained
as

∂

∂δi

(∫ Tδ

τi+1

Φ(t, τa)TQΦ(t, τa)dt
)

=

146 Switching Time Optimization Proofs

= ∂

∂δi

(
Φ(τi+1, τa)T

(∫ Tδ

τi+1

Φ(t, τi+1)TQΦ(t, τi+1)dt
)

Φ(τi+1, τa)
)

= ∂

∂δi

(
Φ(τi+1, τa)TPi+1Φ(τi+1, τa)

)
= ∂

∂δi

(
Φ(τi+1, τa)T

)
Pi+1Φ(τi+1, τa)

+ Φ(τi+1, τa)TPi+1
∂

∂δi

(
Φ(τi+1, τa)

)
= Φ(τi+1, τa)T

(
(Anii)TPi+1 + Pi+1A

ni
i

)
Φ(τi+1, τa). (A.9)

In the first and second equalities we decomposed the state transition ma-
trices and used the definition of Pi+1 of (2.10). In the third equality we
applied the chain rule, noting that Pi+1 is independent of δi. Then, in the
last equality we applied Lemma A.1 to compute the derivatives. We now
rewrite (A.7) using (A.8) and (A.9) obtaining

∂Pa
∂δi

= Φ(τi+1, τa)T
(
Q+ (Anii)TPi+1 + Pi+1A

ni
i

)
Φ(τi+1, τa). (A.10)

Second part. We now focus on the derivative of Fa in (A.6) which can
be written so that

∂Fa
∂δi

= ∂

∂δi

(
Φ(Tδ, τa)TEΦ(Tδ, τa)

)
= ∂

∂δi

(
Φ(τi+1, τa)T

(
Φ(Tδ, τi+1)TEΦ(Tδ, τi+1)

)
Φ(τi+1, τa)

)
= ∂

∂δi

(
Φ(τi+1, τa)TFi+1Φ(τi+1, τa)

)
= ∂

∂δi

(
Φ(τi+1, τa)T

)
Fi+1Φ(τi+1, τa)

+ Φ(τi+1, τa)TFi+1
∂

∂δi

(
Φ(τi+1, τa)

)
= Φ(τi+1, τa)T

(
(Anii)TFi+1 + Fi+1A

ni
i

)
Φ(τi+1, τa), (A.11)

A.1. Proof of Theorem 2.1 147

In the first and second equalities we decomposed the state transition ma-
trices and used the definition of Fi+1 from (2.11). In the third equality
we applied the chain rule, noting that Fi+1 is independent of δi. Then, in
the last equality we applied Lemma A.1 to compute the derivatives.

By adding (A.10) and (A.11) as in (A.6) and applying Definition 2.2
we obtain
∂Sa
∂δi

= Φ(τi+1, τa)T
(
Q+ (Anii)T Si+1 + Si+1A

ni
i

)
Φ(τi+1, τa). (A.12)

The result follows by using Definition 2.3. �

A.1.2 Main result

We are now in a position to prove each of the statements in Theorem 2.1
in turn:

Cost function – proof of (i). The cost function in (2.16) can be directly
derived from its definition in Problem (Plin) and Definition 2.2.

Gradient – proof of (ii). The gradient of the cost function can be derived
by taking the derivative of (2.16). By considering the component related
to δi, we can write

∂J(δ)
∂δi

= ∂

∂δi

(
xT0 S0x0

)
= xT0

∂S0

∂δi
x0

= xT0 Φ(τi+1, 0)TCiΦ(τi+1, 0)x0

= xTi+1Cixi+1. (A.13)
In the second equality the initial state has been taken out from the deriva-
tive operator since x0 fixed. In the third equality we applied Lemma A.2
and in the fourth equality we used Definition 2.1 to obtain xi+1. The
result holds for i = 0, . . . , N .

148 Switching Time Optimization Proofs

Hessian – proof of (iii). The Hessian of the cost function can be derived
by taking the derivative of (A.13). Let us first take the derivative with
respect to the same interval δi writing

∂2J(δ)
∂δ2
i

= ∂

∂δi

(
xTi+1Cixi+1

)
= ∂

∂δi

(
xT0 Φ(τi+1, 0)TCiΦ(τi+1, 0)x0

)
= xT0

∂

∂δi

(
Φ(τi+1, 0)T

)
CiΦ(τi+1, 0)x0

+ xT0 Φ(τi+1, 0)TCi
∂

∂δi

(
Φ(τi+1, 0)

)
x0

= xT0 Φ(τi+1, 0)T (Anii)T CiΦ(τi+1, 0)x0
+ xT0 Φ(τi+1, 0)TCiAnii Φ(τi+1, 0)x0

= xTi+1 (Anii)T Cixi+1 + xTi+1CiA
ni
i xi+1

= 2xTi+1CiA
ni
i xi+1

= 2xTi+1CiΦ(τi+1, τi+1)Anii xi+1. (A.14)

In the third equality we took into account that Ci and x0 do not depend
on δi and we applied the chain rule. In the fourth equality we applied
Lemma A.1 and in the fifth equality Definition 2.1. Finally, in the fifth
and sixth equality we took the transpose of the first term which is a scalar
and we used the identity CiAnii = CiΦ(τi+1, τi+1)Anii to get the desired
result.

In the case when we take the derivative with respect to δ` with ` > i,
we can write

∂2J(δ)
∂δ`∂δi

= ∂

∂δ`

(
xTi+1Cixi+1

)
= ∂

∂δ`

(
xTi+1

(
Q+AniTi Si+1 + Si+1A

ni
i

)
xi+1

)
= xTi+1A

niT
i

∂

∂δ`

(
Si+1

)
xi+1 + xTi+1

∂

∂δ`

(
Si+1

)
Anii xi+1

A.2. Proof of Proposition 2.1 149

= 2xTi+1
∂

∂δ`

(
Si+1

)
Anii xi+1

= 2xTi+1Φ(τ`+1, τi+1)TC`Φ(τ`+1, τi+1)Anii xi+1

= 2xT`+1C`Φ(τ`+1, τi+1)Anii xi+1 (A.15)

in the second equality we applied Definition 2.3. In the third inequality we
brought the terms not depending on δ` outside of the derivative operator.
In the fourth equality we took the transpose of the first element which
is a scalar. In the fifth equality we applied Lemma A.2 and finally we
obtained x`+1 from Definition 2.1. �

A.2 Proof of Proposition 2.1

From Definition 2.2, we can obtain (2.23) by directly setting i = N + 1.
The recursion (2.24) can be derived by using (2.10) and (2.11) to

rewrite (2.12) as follows:

Sji =
∫ Tδ

τj
i

Φ(t, τ ji)TQΦ(t, τ ji)dt+ Φ(Tδ, τ ji)TEΦ(Tδ, τ ji)

=
∫ τj+1

i

τj
i

Φ(t, τ ji)TQΦ(t, τ ji)dt

+
∫ Tδ

τj+1
i

Φ(t, τ ji)TQΦ(t, τ ji)dt+ Φ(Tδ, τ ji)TEΦ(Tδ, τ ji)

=
∫ τj+1

i

τj
i

Φ(t, τ ji)TQΦ(t, τ ji)dt+

+ Φ(τ j+1
i , τ ji)T

(∫ Tδ

τj+1
i

Φ(t, τ j+1
i)TQΦ(t, τ j+1

i)dt

+ Φ(Tδ, τ j+1
i)TEΦ(Tδ, τ j+1

i)
)

Φ(τ j+1
i , τ ji)

=
∫ τj+1

i

τj
i

Φ(t, τ ji)TQΦ(t, τ ji)dt+ Φ(τ j+1
i , τ ji)TSj+1

i Φ(τ j+1
i , τ ji)

150 Switching Time Optimization Proofs

=
∫ δj

i

0
Φ(η + τ ji , τ

j
i)TQΦ(η + τ ji , τ

j
i)dη

+ Φ(τ j+1
i , τ ji)TSj+1

i Φ(τ j+1
i , τ ji)

=
∫ δj

i

0
eA

jT
i
ηQeA

j
i
ηdη + eA

jT
i
δj
iSj+1

i eA
jT
i
δj
i

= M j
i + EjTi Sj+1

i Eji .

In the second equality we split the integral in two parts. In the third
equality we bring the matrices Φ(τ j+1

i , τ ji) and Φ(τ j+1
i , τ ji)T outside the

integrals since they do not depend on t. In the fourth equality we ap-
ply (2.12) to obtain Sj+1

i . In the fifth equality we applied a change of
variables η = t− τ ji . In the last equality we rewrite the transition matri-
ces using matrix exponentials.

B
Variable-Speed Drive Control

In this appendix we describe the detailed derivation of the drive system
introduced in Section 4.2 and composed of an inverter and motor.

B.1 Reference frames

Variables in the three-phases system (abc) are denoted by vabc =
(va, vb, vc). In certain cases it is common practice to express variables
the stationary orthogonal αβ coordinates as vαβ = (vα, vβ). To transform
a vector vabc in the stationary orthogonal αβ coordinates, it is sufficient
to compute

vαβ = Pvabc.

The inverse operation can be performed as vabc = P †vαβ . The matrices P
and P † are the Clarke transform and its pseudoinverse respectively, i.e.,

P = 2
3

[
1 −1/2 −1/2
0
√

3/2 −
√

3/2

]
, P † = 3/2PT .

151

152 Variable-Speed Drive Control

B.2 Physical model of the inverter

The switch positions in the three phase legs can be described by the
integer input variables ua, ub, uc ∈ {−1, 0, 1}, leading to phase voltages
{−Vdc/2, 0, Vdc/2}, respectively. Hence, the output voltage of the inverter
is given by

vαβ = (Vdc/2)uαβ = (Vdc/2)Pusw, (B.1)

where usw = (ua, ub, uc).

B.3 Physical model of the machine

Hereafter we derive the state-space model of the squirrel-cage induction
machine in the αβ plane. We express stator current is and the rotor flux
ψr as state variables. The model input is the stator voltage vs which
is equal to the inverter output voltage in (B.1). The model parameters
are: the stator and rotor resistances Rs and Rr; the mutual, stator and
rotor reactances Xm, Xls and Xlr, respectively; the inertia J ; and the
mechanical load torque Tl. Given these quantities, the continuous-time
state equations [115, 97] are

dis(t)
dt = − 1

τs
is(t) +

(
1
τr
I − ωr

[
0 −1
1 0

])
Xm

D
ψr(t) + Xr

D
vs(t)

dψr(t)
dt = Xm

τr
is(t)−

1
τr
ψr(t) + ωr

[
0 −1
1 0

]
ψr(t)

dωr(t)
dt = 1

J
(Te(t)− Tl(t)) ,

(B.2)

where D := XsXr − X2
m with Xs := Xls + Xm and Xr := Xlr + Xm.

Constants τs := XrD/
(
RsX

2
r +RrX

2
m

)
and τr := Xr/Rr are the tran-

sient stator and the rotor time constants respectively. The electromagnetic
torque is given by

T (t) := Xm

Xr
(ψr(t)× is(t)) . (B.3)

B.4. Complete model of the physical system 153

The rotor speed ωr is assumed to be constant within the prediction hori-
zon. For prediction horizons in the order of a few milliseconds this is a
mild assumption.

B.4 Complete model of the physical system

Given the models of the drive and of the induction motor in (B.1) and
(B.2) respectively, the state-space model in the continuous time domain
can be described as

ẋph(t) = Dxph(t) + Eusw(t),
yph(t) = Fxph(t),

(B.4)

where the state vector xph = (is, ψr) ∈ R4 includes the stator current
and rotor flux in the αβ reference frame. The output vector is the stator
current, i.e., yph = is ∈ R2. The matrices D,E and F are defined as

D =



− 1
τs

0 Xm

τrD
ωr
Xm

D

0 − 1
τs
−ωr

Xm

D

Xm

τrD

Xm

τr
0 − 1

τr
−ωr

0 Xm

τr
ωr − 1

τr



E = Xr

D

Vdc

2


1 0
0 1
0 0
0 0

P, F =
[
1 0 0 0
0 1 0 0

]
.

The state-space model of the drive can be converted into the discrete-
time domain using exact Euler discretization. By integrating the first
equation in (B.4) from kT̂s to (k+ 1)T̂s and keeping usw constant during
each interval, we can obtain the discrete-time model in (4.1) with Aph :=

154 Variable-Speed Drive Control

eDT̂s , Bph := −D−1 (I −Aph)E, Dph := F and k ∈ Z+. Although the
sampling time is Ts = 25 µs, we use the discretization interval T̂s = Tsωb
for consistency with our per unit system, where ωb is the base frequency.

B.5 Value function underestimation

In this section we formulate the value function approximation semidefinite
program (SDP) for the power system by adapting problem (3.10). The
quadratic form Mi(u) can be decomposed as follows.

For every feasible current usw, and previous ūsw semiconductor posi-
tions, i.e.,

(usw, ūsw) ∈M :=
{

(usw, ūsw) ∈ {−1, 0, 1}6 | ‖usw − ūsw‖1 ≤ 1
}
, (B.5)

we can define the augmented input

ũ = (usw, ‖usw − ūsw‖1)

and the matrix Mi(ũ) using (3.9). We can then decompose the vector z
in the quadratic form (3.8) using the augmented state definition (4.13).

(z, 1) = (zph, zosc, zsw, zu, 1).

The matrixM(ũ) can also be decomposed in the same fashion into smaller
block matrices as

zph
zosc
zsw,1:2
zsw,3
zu
1



T 
Mi,11 Mi,12 Mi,13 Mi,14

MT
i,12 Mi,22 Mi,23 Mi,24

MT
i,13 MT

i,23 Mi,33 Mi,34
MT
i,14 MT

i,24 MT
i,34 Mi,44





zph
zosc
zsw,1:2
zsw,3
zu
1


≥ 0,

where the dependency on ũ has been neglected to simplify notation. The
first row and first column block matrices have the first and second dimen-
sions respectively equal to the length of vector (zph, zosc, zsw,1:2). Since

B.6. Integer quadratic program reformulation 155

zu = ūsw are the previous switch positions and zsw,3 = 1 are the nor-
malized desired switching frequency, we can simplify the quadratic form
to 

zph
zosc
zsw,1:2

1


T  Mi,11 Ψi,1

ΨT
i,1 Ψi,2



zph
zosc
zsw,1:2

1

 ≥ 0, (B.6)

where
Ψi,1 = Mi,13zu +Mi,12 +Mi,14

Ψi,2 = zTuMi,33zu + 2Mi,23zu + 2MT
i,34zu

+ 2Mi,24 +Mi,22,

Therefore, we will denote the matrix in (B.6) as M̃i(ũ) and the quadratic
form vectors as (z̃, 1). We can finally write the final SDP as

minimize tr(P0Σ) + 2qT0 µ+ r0
subject to M̃i(ũ) � 0, ∀ũ ∈M,∀z̃ ∈ R8, i = 1, . . . ,M

V̂0 = V̂M = V̂ , Pi ∈ S+,

(B.7)

which is both easier to solve than the original problem (3.10) and provides
a tighter underapproximation because some of the elements of z are fixed
to their only acceptable values.

B.6 Integer quadratic program reformulation

By considering the input sequence (4.20) and the state sequence over the
horizon denoted as

x = (x(0), x(1), . . . , x(N)),

the system dynamics (4.15) can be written as

x = Ax0 + Bu, (B.8)

156 Variable-Speed Drive Control

where A and B are

A :=


I

A
...
AN

 , B :=


0 . . . 0
B ...AB B
... 0

AN−1B · · · AB B

 ,

and the initial state x(0) = x0.

Cost function. Let us separate the cost function in (4.16) in two parts:
the cost from stage 0 to N − 1 and the tail cost. The former can be
rewritten as

N−1∑
k=0

γk‖Cx(k)‖22 = xTHx

= uTBTHBu+ 2
(
BTHAx0

)T
u+ const(x0),

(B.9)

where the last equality is obtained using (B.8) and the term const(x0) is
a constant depending on the initial state. We define matrix H is as

H = diag(γ0, γ1, . . . , γN−1, 0)⊗ CTC. (B.10)

In order derive the tail cost, let us write the last stage as

x(N) = ANx0 + Bendu, (B.11)

where Bend is the last row of B used to compute the last state. Using (B.11)
and the tail cost formulation (3.11), the tail cost can be rewritten as

V̂ (x(N)) = x(N)TP0x(N) + 2qT0 x(N) + r0

= uT
(
BTendP0Bend

)
u+ 2

(
BTendP0A

Nx0 + BTendq0
)T
u

+ const(x0).
(B.12)

B.6. Integer quadratic program reformulation 157

By combining (B.9) and (B.12) according to (4.16), we obtain the full
cost function

J = uTQu+ 2f (x0)T u+ const(x0),

with

Q = BTHB + γNBTendP0Bend

f (x0) =
(
BTHA+ γNBendP0AN

)
x0 + γNBTendq0. (B.13)

Constraints. We now rewrite the constraints of problem (4.16) in vector
form with k = 0, . . . , N − 1. Constraint (4.17) can be written as

Fu ≤ 1. (B.14)

Similarly, inequalities (4.18) can be written as

Ru ≤ Sx ⇐⇒ (R− SB)u ≤ SAx0, (B.15)

where in the term on the right we substituted (B.8). Finally constraint
(4.19) enforcing the semiconductor devices positions to be integer and
between −1 and 1 can be written as

Gu ≤
[

1
−1

]
, (B.16)

together with u ∈ Z6N . Matrices F , R,S and G are

R =
[
I ⊗ (I − T)
I ⊗ (−I − T)

]
, S =

[
I ⊗W 0
I ⊗−W 0

]
,

F =
[
I ⊗ T
I ⊗−T

]
, G =

[
I ⊗G
I ⊗−G

]
.

We can now combine (B.14), (B.15), and (B.16) into a single inequality
Fu ≤ g(x0) and rewrite problem (4.16) neglecting the constant terms in
the cost function obtaining (4.21).

C
OSQP Benchmark Problem Classes

In this Appendix we collect the problem descriptions used for benchmark-
ing the OSQP solver in Chapter 5.

C.1 Random QP

Consider the following quadratic program (QP)

minimize 1
2x

TPx+ qTx

subject to l ≤ Ax ≤ u.

Problem instances. The number of variables and constraints in our
problem instances are n and m = 10n. We generated random matrix
P = MMT where M ∈ Rn×n and 50% nonzero elements Mij ∼ N (0, 1).
We set the elements of A ∈ Rm×n as Aij ∼ N (0, 1) with only 50%
being nonzero. The linear part of the cost is normally distributed, i.e.,

159

160 OSQP Benchmark Problem Classes

qi ∼ N (0, 1). We generated the constraint bounds as ui ∼ U(0, 1),
li ∼ −U(0, 1).

C.2 Equality constrained QP

Consider the following equality constrained QP

minimize 1
2x

TPx+ qTx

subject to Ax = b.

This problem can be rewritten as (5.1) by setting l = u = b.

Problem instances. The number of variables and constraints in our
problem instances are n and m = bn/2c. We generated random matrix
P = MMT where M ∈ Rn×n and 50% nonzero elements Mij ∼ N (0, 1).
We set the elements of A ∈ Rm×n as Aij ∼ N (0, 1) with only 50% being
nonzero. The vectors are all normally distributed, i.e., qi, li, ui ∼ N (0, 1).

Iterative refinement interpretation. Solution of the above problem can
be found directly by solving the following linear system[

P AT

A 0

] [
x

ν

]
=
[
−q
b

]
. (C.1)

If we apply the ADMM iterations (5.13)–(5.17) for solving the above
problem, and by setting α = 1 and y0 = b, the algorithm boils down to
the following iteration[

xk+1

νk+1

]
=
[
xk

νk

]
+
[
P + σI AT

A − 1
ρI

]−1([
−q
b

]
−
[
P AT

A 0

] [
xk

νk

])
,

which is equivalent to (5.42) with g = (−q, b) and t̂k = (xk, νk). This
means that Algorithm 5 applied to solve an equality constrained QP is
equivalent to applying iterative refinement [61] to solve the KKT system
(C.1).

C.3. Portfolio optimization 161

C.3 Portfolio optimization

Portfolio optimization is a problem arising in finance that seeks to allocate
assets in a way that maximizes the risk adjusted return [122, 31, 28], [33,
§4.4.1],

maximize µTx− γ(xTΣx)
subject to 1Tx = 1

x ≥ 0,

where the variable x ∈ Rn represents the portfolio, µ ∈ Rn the vector of
expected returns, γ > 0 the risk aversion parameter, and Σ ∈ Sn×n the
risk model covariance matrix. The risk model is usually assumed to be
the sum of a diagonal and a rank k < n matrix

Σ = FFT +D,

where F ∈ Rn×k is the factor loading matrix and D ∈ Rn×n is a diagonal
matrix describing the asset-specific risk.

We introduce a new variable y = FTx and solve the resulting problem
in variables x and y

minimize xTDx+ yT y − 1
γµ

Tx

subject to y = FTx

1Tx = 1
x ≥ 0,

(C.2)

Note that the Hessian of the objective in (C.2) is a diagonal matrix. Also,
observe that FFT does not appear in problem (C.2).

Problem instances. We generated portfolio problems for increasing
number of factors k and number of assets 100k. The elements of matrix
F were chosen as Fij ∼ N (0, 1) with 50% nonzero elements. The diagonal
matrix D is chosen as Dii ∈ U [0,

√
k]. The mean return was generated as

µi ∈ N (0, 1). We set γ = 1.

162 OSQP Benchmark Problem Classes

C.4 Lasso

The least absolute shrinkage and selection operator (lasso) is a well known
linear regression technique obtained by adding an `1 regularization term
in the objective [168, 38]. It can be formulated as

minimize ‖Ax− b‖22 + λ‖x‖1,

where x ∈ Rn is the vector of parameters and A ∈ Rm×n is the data
matrix and λ is the weighting parameter.

We convert this problem to the following QP

minimize yT y + λ1T t
subject to y = Ax− b

−t ≤ x ≤ t,

where y ∈ Rm and t ∈ Rn are two newly introduced variables.

Problem instances. The elements of matrix A are generated as Aij ∼
N (0, 1) with 50% nonzero elements. To construct the vector b, we gener-
ated the true sparse vector v ∈ Rn to be learned

vi ∼

{
0 with probability p = 0.5
N (0, 1/n) otherwise.

Then, we let b = Av + ε where ε is the noise generated as εi ∼ N (0, 1).
We generated the instances with varying n features and m = 100n data
points. The parameter λ is chosen as (1/5)‖AT b‖∞ since ‖AT b‖∞ is the
critical value above which the solution of the problem is x = 0.

C.5 Huber fitting

Huber fitting or the robust least-squares problem performs linear regression
under the assumption that there are outliers in the data [98, 99]. The

C.6. Support vector machine 163

fitting problem is written as

minimize
∑m
i=1 φhub(aTi x− bi), (C.3)

with the Huber penalty function φhub : R→ R defined as

φhub(u) =
{
u2 |u| ≤M
M(2|u| −M) |u| > M.

Problem (C.3) is equivalent to the following QP [33, p.190]

minimize 1
2u

Tu+M1T v
subject to −u− v ≤ Ax− b ≤ u+ v

0 ≤ u ≤M1
v ≥ 0.

Problem instances. We generate the elements of A as Aij ∼ N (0, 1).
To construct b ∈ Rm we first generate a vector v ∈ Rn as vi ∼ N (0, 1/n)
and a noise vector ε ∈ Rm with elements

εi ∼

{
N (0, 1/4) with probability p = 0.95
U [0, 10] otherwise.

We then set b = Av+ε. For each instance we choose m = 10n andM = 1,
solve it 10 times and take the mean computation time.

C.6 Support vector machine

Support vector machine problem seeks an affine function that approxi-
mately classifies the two sets of points [44]. The problem can be stated
as

minimize xTx+ λ
∑m
i=1 max(0, biaTi x+ 1),

164 OSQP Benchmark Problem Classes

where bi ∈ {−1,+1} is a set label, and ai is a vector of features for the
i-th point. The problem can be equivalently represented as the following
QP

minimize xTx+ λ1T t
subject to t ≥ diag(b)Ax+ 1

t ≥ 0,

where diag(b) denotes the diagonal matrix with elements of b on its di-
agonal.

Problem instances. We choose the vector b so that

bi =
{

+1 i ≤ m/2
−1 otherwise,

and the elements of A as

Aij ∼

{
N (+1/n, 1/n) i ≤ m/2
N (−1/n, 1/n) otherwise.

References

[1] T. Achterberg. SCIP: solving constraint integer programs. Mathematical
Programming Computation, 1(1):1–41, July 2009.

[2] A. Agrawal, R. Verschueren, S. Diamond, and S. Boyd. A rewriting system
for convex optimization problems. Journal of Control and Decision (To
appear), January 2018.

[3] F. Allgöwer, T. A. Badgwell, J. S. Qin, J. B. Rawlings, and S. J. Wright.
Nonlinear Predictive Control and Moving Horizon Estimation – An In-
troductory Overview, pages 391–449. Springer London, London, 1999.

[4] P. R. Amestoy, T. A. Davis, and I. S. Duff. Algorithm 837: AMD, an
approximate minimum degree ordering algorithm. ACM Transactions on
Mathematical Software, 30(3):381–388, 2004.

[5] P. R. Amestoy, I.S. Duff, J. Koster, and J.-Y. L’Excellent. A fully asyn-
chronous multifrontal solver using distributed dynamic scheduling. SIAM
Journal on Matrix Analysis and Applications, 23(1):15–41, 2001.

[6] Avnet, Inc. Zedboard Hardware User’s Guide 2.2, 2014.
[7] D. Axehill and A. Hansson. A mixed integer dual quadratic programming

algorithm tailored for MPC. In Proceedings of the 45th IEEE Conference
on Decision and Control, pages 5693–5698, December 2006.

165

166 References

[8] H. Axelsson, M. Egerstedt, Y. Wardi, and G. Vachtsevanos. Algorithm for
switching-time optimization in hybrid dynamical systems. In Proceedings
of the 2005 IEEE International Symposium on, Mediterrean Conference
on Control and Automation Intelligent Control, pages 256–261, June 2005.

[9] H. Balakrishnan, I. Hwang, and C. J. Tomlin. Polynomial approximation
algorithms for belief matrix maintenance in identity management. In
IEEE Conference on Decision and Control (CDC), volume 5, pages 4874–
4879 Vol.5, December 2004.

[10] G. Banjac and P. Goulart. Tight global linear convergence rate bounds for
operator splitting methods. www.optimization-online.org, October 2016.

[11] G. Banjac, P. Goulart, B. Stellato, and S. Boyd. Infeasibility detection in
the alternating direction method of multipliers for convex optimization.
SIAM Journal on Optimization (Submitted), June 2017.

[12] G. Banjac, B. Stellato, N. Moehle, P. Goulart, A. Bemporad, and S. Boyd.
Embedded code generation using the OSQP solver. In IEEE Conference
on Decision and Control (CDC) (To appear), 2017.

[13] H. H. Bauschke and J. M. Borwein. On projection algorithms for solving
convex feasibility problems. SIAM Review, 38(3):367–426, 1996.

[14] H. H. Bauschke and P. L. Combettes. Convex Analysis and Monotone
Operator Theory in Hilbert Spaces. Springer, 1st edition, 2011.

[15] P. Belotti, C. Kirches, S. Leyffer, J. Linderoth, J. Luedtke, and A. Ma-
hajan. Mixed-integer nonlinear optimization. Acta Numerica, 22:1–131,
2013.

[16] A. Bemporad. Solving mixed-integer quadratic programs via nonnega-
tive least squares. IFAC-PapersOnLine, 48(23):73–79, 2015. 5th IFAC
Conference on Nonlinear Model Predictive Control NMPC.

[17] A. Bemporad and M. Morari. Control of systems integrating logic, dy-
namics, and constraints. Automatica, 35(3):407–427, 1999.

[18] A Bemporad, M Morari, V Dua, and E N Pistikopoulos. The explicit
linear quadratic regulator for constrained systems. Automatica, 38(1):3–
20, 2002.

[19] M. Benzi. Preconditioning techniques for large linear systems: A survey.
Journal of Computational Physics, 182(2):418 – 477, 2002.

References 167

[20] D. P. Bertsekas. Dynamic Programming and Optimal Control, volume 1.
Athena Scientific, Belmont, MA, 3rd edition, 2005.

[21] D. P. Bertsekas. Dynamic Programming and Optimal Control, volume 2.
Athena Scientific, Belmont, MA, 3rd edition, 2005.

[22] D. Bertsimas, A. King, and R. Mazumder. Best subset selection via a
modern optimization lens. The Annals of Statistics, 44(2):813–852, April
2016.

[23] D. Bertsimas and R. Weismantel. Optimization Over Integers. Dynamic
Ideas, Belmont, MA, 2005.

[24] P. Beuchat, A. Georghiou, and J. Lygeros. Approximate dynamic
programming: a Q-function approach. ArXiv e-prints, February 2016,
1602.07273.

[25] D. Bienstock. Computational study of a family of mixed-integer quadratic
programming problems. Mathematical Programming, 74(2):121–140,
1996.

[26] R. E. Bixby. A brief history of linear and mixed-integer programming
computation. Documenta Mathematica, pages 107–121, 2010.

[27] P. Bonami and M. A. Lejeune. An exact solution approach for portfolio
optimization problems under stochastic and integer constraints. Opera-
tions Research, 57(3):650–670, 2009.

[28] S. Boyd, E. Busseti, S. Diamond, R. N. Kahn, K. Koh, P. Nystrup, and
J. Speth. Multi-period trading via convex optimization. Foundations and
Trends in Optimization, 3(1):1–76, 2017.

[29] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix
Inequalities in System and Control Theory. Society for Industrial and
Applied Mathematics, 1994.

[30] S. Boyd and J. Mattingley. Branch and bound methods. Lecture notes,
2010.

[31] S. Boyd, M. T. Mueller, B. O’Donoghue, and Y. Wang. Performance
bounds and suboptimal policies for multi-period investment. Foundations
and Trends in Optimization, 1(1):1–72, 2014.

168 References

[32] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed
optimization and statistical learning via the alternating direction method
of multipliers. Foundations and Trends in Machine Learning, 3(1):1–122,
2011.

[33] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge Univer-
sity Press, 2004.

[34] A. Bradley. Algorithms for the equilibration of matrices and their appli-
cation to limited-memory Quasi-Newton methods. PhD thesis, Stanford
University, 2010.

[35] R. Breu and C.-A. Burdet. Branch and bound experiments in zero-one
programming, pages 1–50. Springer Berlin Heidelberg, Berlin, Heidelberg,
1974.

[36] R. H. Byrd, J. Nocedal, and R. A. Waltz. KNITRO: An Integrated Pack-
age for Nonlinear Optimization, pages 35–59. Springer US, Boston, MA,
2006.

[37] T. M. Caldwell and T. D. Murphey. Single integration optimization of
linear time-varying switched systems. IEEE Transactions on Automatic
Control, 57(6):1592–1597, May 2012.

[38] E. J. Candés, M. B. Wakin, and S. Boyd. Enhancing sparsity by
reweighted `1 minimization. Journal of Fourier Analysis and Applica-
tions, 14(5):877–905, 2008.

[39] E. Chu, N. Parikh, A. Domahidi, and S. Boyd. Code generation for em-
bedded second-order cone programming. In European Control Conference
(ECC), pages 1547–1552, 2013.

[40] V. Chvàtal, W. Cook, and M. Hartmann. On cutting-plane proofs in
combinatorial optimization. Linear Algebra and its Applications, 114:455–
499, 1989.

[41] M. Claeys, J. Daafouz, and D. Henrion. Modal occupation measures
and LMI relaxations for nonlinear switched systems control. Automatica,
64:143 – 154, 2016.

[42] G. Cornuejols and R. Tütüncü. Optimization Methods in Finance. Math-
ematics, Finance and Risk. Cambridge University Press, 2006.

[43] Intel Corporation. Intel Math Kernel Library. User’s Guide, 2017.

References 169

[44] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning,
20(3):273–297, 1995.

[45] P. Cortes, M. P. Kazmierkowski, R. M. Kennel, D. E. Quevedo, and J. Ro-
driguez. Predictive control in power electronics and drives. IEEE Trans-
actions on Industrial Electronics, 55(12):4312–4324, December 2008.

[46] R. J. Dakin. A tree-search algorithm for mixed integer programming
problems. The Computer Journal, 8(3):250–255, 1965.

[47] G. B. Dantzig. Linear programming and extensions. Princeton University
Press Princeton, Princeton, N. J., 1963.

[48] T. A. Davis. Algorithm 849: A concise sparse Cholesky factorization
package. ACM Transactions on Mathematical Software, 31(4):587–591,
2005.

[49] T. A. Davis. Direct Methods for Sparse Linear Systems. Society for
Industrial and Applied Mathematics, 2006.

[50] D. P. de Farias and B. Van Roy. The linear programming approach to
approximate dynamic programming. Operations Research, 51(6):850–865,
November 2003.

[51] S. Diamond and S. Boyd. CVXPY: A Python-embedded modeling lan-
guage for convex optimization. Journal of Machine Learning Research,
17(83):1–5, 2016.

[52] S. Diamond and S. Boyd. Stochastic matrix-free equilibration. Journal of
Optimization Theory and Applications, 172(2):436–454, February 2017.

[53] M. Diehl, H. J. Ferreau, and N. Haverbeke. Efficient Numerical Meth-
ods for Nonlinear MPC and Moving Horizon Estimation, chapter Lecture
Notes in Control and Information Sciences, pages 391–417. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2009.

[54] X. C. Ding, Y. Wardi, and M. Egerstedt. On-line optimization of switched-
mode dynamical systems. IEEE Transactions on Automatic Control,
54(9):2266–2271, August 2009.

[55] E. D. Dolan and J. J. Moré. Benchmarking optimization software with
performance profiles. Mathematical Programming, 91(2):201–213, January
2002.

[56] A. Domahidi, E. Chu, and S. Boyd. ECOS: An SOCP solver for embedded
systems. In European Control Conference (ECC), pages 3071–3076, 2013.

170 References

[57] A. Domahidi and J. Jerez. FORCES Professional. embotech GmbH
(http://embotech.com/FORCES-Pro), July 2014.

[58] J. Douglas and H. H. Rachford. On the numerical solution of heat con-
duction problems in two and three space variables. Transactions of the
American Mathematical Society, 82(2):421–439, 1956.

[59] D. Dueri, J. Zhang, and B. Açikmeşe. Automated custom code generation
for embedded, real-time second order cone programming. In IFAC World
Congress, volume 47, pages 1605–1612, 2014.

[60] W. C. Duesterhoeft, M. W. Schulz, and E. Clarke. Determination of
instantaneous currents and voltages by means of alpha, beta, and zero
components. Transactions of the American Institute of Electrical Engi-
neers, 70(2):1248–1255, July 1951.

[61] I. S. Duff, A. M. Erisman, and J. K. Reid. Direct methods for sparse
matrices. Oxford University Press, London, 1989.

[62] I. Dunning, J. Huchette, and M. Lubin. JuMP: A modeling language for
mathematical optimization. SIAM Review, 59(2):295–320, 2017.

[63] J. Eckstein. Splitting methods for monotone operators with applications
to parallel optimization. PhD thesis, MIT, 1989.

[64] M. Egerstedt, Y. Wardi, and H. Axelsson. Transition-time optimization
for switched-mode dynamical systems. IEEE Transactions on Automatic
Control, 51(1):110–115, January 2006.

[65] H. J. Ferreau, C. Kirches, A. Potschka, H. G. Bock, and M. Diehl.
qpOASES: a parametric active-set algorithm for quadratic programming.
Mathematical Programming Computation, 6(4):327–363, 2014.

[66] M. Fischetti, F. Glover, and A. Lodi. The feasibility pump. Mathematical
Programming, 104(1):91–104, 2005.

[67] K. Flaßkamp, T. Murphey, and S. Ober-Blöbaum. Discretized switch-
ing time optimization problems. In 2013 European Control Conference
(ECC), pages 3179–3184, July 2013.

[68] R. Fletcher and S. Leyffer. Numerical experience with lower bounds for
MIQP branch-and-bound. SIAM Journal on Optimization, 8(2):604–616,
1998.

http://embotech.com/FORCES-Pro

References 171

[69] C. Fougner and S. Boyd. Parameter selection and pre-conditioning for
a graph form solver. In R. Tempo, S. Yurkovich, and P. Misra, edi-
tors, Emerging Applications of Control and System Theory (To appear).
Springer, September 2017.

[70] M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval
Research Logistics Quarterly, 3(1-2):95–110, 1956.

[71] D. Frick, A. Domahidi, and M. Morari. Embedded optimization for mixed
logical dynamical systems. Computers & Chemical Engineering, 72:21–33,
2015.

[72] D. Frick, J. L. Jerez, A. Domahidi, A. Georghiou, and M. Morari. Low-
complexity iterative method for hybrid MPC. ArXiv e-prints, 2016,
1609.02819.

[73] G. Frison, H. H. B. Sørensen, B. Dammann, and J. B. Jørgensen. High-
performance small-scale solvers for linear model predictive control. In
2014 European Control Conference (ECC), pages 128–133, June 2014.

[74] D. Gabay and B. Mercier. A dual algorithm for the solution of nonlin-
ear variational problems via finite element approximation. Computers &
Mathematics with Applications, 2(1):17 – 40, 1976.

[75] C. E. García, D. M. Prett, and M. Morari. Model predictive control:
Theory and practice–A survey. Automatica, 25(3):335 – 348, 1989.

[76] M. Gerdts. A variable time transformation method for mixed-integer
optimal control problems. Optimal Control Applications and Methods,
27(3):169–182, 2006.

[77] E. M. Gertz and S. J. Wright. Object-oriented software for quadratic
programming. ACM Trans. Math. Softw., 29(1):58–81, March 2003.

[78] T. Geyer. Low complexity model predictive control in power electronics
and power systems. Cuvillier Verlag, 2005.

[79] T. Geyer, G. Papafotiou, and M. Morari. Model predictive direct torque
control – part I: Concept, algorithm, and analysis. IEEE Transactions on
Industrial Electronics, 56(6):1894–1905, June 2009.

[80] T. Geyer and D. E. Quevedo. Multistep finite control set model predictive
control for power electronics. IEEE Transactions on Power Electronics,
29(12):6836–6846, 2014.

172 References

[81] T. Geyer and D. E. Quevedo. Performance of multistep finite control
set model predictive control for power electronics. IEEE Transactions on
Power Electronics, 30(3):1633–1644, 2015.

[82] E. Ghadimi, A. Teixeira, I. Shames, and M. Johansson. Optimal pa-
rameter selection for the alternating direction method of multipliers
(ADMM): Quadratic problems. IEEE Transactions on Automatic Con-
trol, 60(3):644–658, 2015.

[83] P. E. Gill, W. Murray, M. A. Saunders, J. A. Tomlin, and M. H. Wright.
On projected newton barrier methods for linear programming and an
equivalence to Karmarkar’s projective method. Mathematical Program-
ming, 36(2):183–209, 1986.

[84] P. Giselsson and S. Boyd. Metric selection in fast dual forward–backward
splitting. Automatica, 62:1–10, 2015.

[85] P. Giselsson and S. Boyd. Linear convergence and metric selection for
Douglas-Rachford splitting and ADMM. IEEE Transactions on Auto-
matic Control, 62(2):532–544, February 2017.

[86] P. Giselsson, M. Fält, and S. Boyd. Line search for averaged operator
iteration. ArXiv e-prints, March 2016, 1603.06772.

[87] R. Glowinski and A. Marroco. Sur l’approximation, par éléments finis
d’ordre un, et la résolution, par pénalisation-dualité d’une classe de prob-
lèmes de dirichlet non linéaires. ESAIM: Mathematical Modelling and
Numerical Analysis - Modélisation Mathématique et Analyse Numérique,
9(R2):41–76, 1975.

[88] G. Golub and C. Van Loan. Matrix Computations. Johns Hopkins Uni-
versity Press, 4rd edition, 1996.

[89] R. E. Gomory. Outline of an algorithm for integer solutions to linear
programs. Bulletin of the American Mathematical Society, 64(5):275–278,
September 1958.

[90] A. Greenbaum. Iterative Methods for Solving Linear Systems. Society for
Industrial and Applied Mathematics, 1997.

[91] O. K. Gupta and A. Ravindran. Branch and bound experiments in convex
nonlinear integer programming. Management Science, 31(12):1533–1546,
1985.

[92] Gurobi Optimization, Inc. Gurobi optimizer reference manual, 2016.

References 173

[93] B. Hassibi and H. Vikalo. On the sphere-decoding algorithm I. expected
complexity. IEEE Transactions on Signal Processing, 53(8):2806–2818,
July 2005.

[94] N. J. Higham. The scaling and squaring method for the matrix exponen-
tial revisited. SIAM Review, 51(4):747–764, November 2009.

[95] M. Hochbruck and A. Ostermann. Exponential integrators. Acta Numer-
ica, 19:209–286, 2010.

[96] C. Hoffmann, C. Kirches, A. Potschka, S. Sager, and L. Wirsching.
MUSCOD-II Users Manual. IWR Universität Heidelberg, Germany, 2011.

[97] J. Holtz. The representation of AC machine dynamics by complex signal
flow graphs. IEEE Transactions on Industrial Electronics, 42(3):263–271,
June 1995.

[98] P. J. Huber. Robust estimation of a location parameter. The Annals of
Mathematical Statistics, 35(1):73–101, 1964.

[99] P. J. Huber. Robust Statistics. John Wiley & Sons, 1981.
[100] J. L. Jerez, P Goulart, S. Richter, G. A. Constantinides, E. C. Kerri-

gan, and M. Morari. Embedded online optimization for model predictive
control at megahertz rates. IEEE Transactions on Automatic Control,
59(12):3238–3251, December 2014.

[101] E. R. Johnson and T. D. Murphey. Second-order switching time optimiza-
tion for nonlinear time-varying dynamic systems. IEEE Transactions on
Automatic Control, 56(8):1953–1957, July 2011.

[102] I. Kale, J. Gryka, G. D. Cain, and B. Beliczynski. FIR filter order reduc-
tion: balanced model truncation and hankel-norm optimal approximation.
IEEE Proceedings - Vision, Image and Signal Processing, 141(3):168–174,
June 1994.

[103] R. E. Kalman. When is a linear control system optimal? Journal of Basic
Engineering, 86(1):51–60, 1964.

[104] L. Kantorovich. Mathematical methods of organizing and planning pro-
duction. Management Science, 6(4):366–422, 1960. English translation.

[105] P. Karamanakos, T. Geyer, and R. Kennel. Reformulation of the long-
horizon direct model predictive control problem to reduce the computa-
tional effort. In 2014 IEEE Energy Conversion Congress and Exposition
(ECCE), pages 3512–3519, September 2014.

174 References

[106] P. Karamanakos, T. Geyer, and R. Kennel. Suboptimal search strate-
gies with bounded computational complexity to solve long-horizon direct
model predictive control problems. In 2015 IEEE Energy Conversion
Congress and Exposition (ECCE), pages 334–341, September 2015.

[107] P. Karamanakos, T. Geyer, N. Oikonomou, F. D. Kieferndorf, and S. Ma-
nias. Direct model predictive control: A review of strategies that achieve
long prediction intervals for power electronics. IEEE Industrial Electron-
ics Magazine, 8(1):32–43, March 2014.

[108] N. Karmarkar. A new polynomial-time algorithm for linear programming.
Combinatorica, 4(4):373–395, 1984.

[109] C. Kelley. Iterative Methods for Linear and Nonlinear Equations. Society
for Industrial and Applied Mathematics, 1995.

[110] B. Khusainov, E. C. Kerrigan, A. Suardi, and G. A. Constantinides. Non-
linear predictive control on a heterogeneous computing platform. In IFAC
World Congress 2017, July 2017.

[111] Kitware, Inc. CMake, 2012.
[112] V. Klee and G. Minty. How good is the simplex algorithm. Technical

report, Department of Mathematics, University of Washington, 1970.
[113] P. A. Knight, D. Ruiz, and B. Uçar. A symmetry preserving algorithm

for matrix scaling. SIAM Journal on Matrix Analysis and Applications,
35(3):931–955, 2014.

[114] S. Kouro, P. Cortes, R. Vargas, U. Ammann, and J. Rodriguez. Model
predictive control - a simple and powerful method to control power con-
verters. IEEE Transactions on Industrial Electronics, 56(6):1826–1838,
June 2009.

[115] P. Krause, O. Wasynczuk, S. D. Sudhoff, and S. Pekarek. Analysis of
Electric Machinery and Drive Systems, volume 75. John Wiley & Sons,
3rd edition, 2013.

[116] R. E. Ladner and M. J. Fischer. Parallel prefix computation. Journal of
the ACM (JACM), 27(4):831–838, October 1980.

[117] A. H. Land and A. G. Doig. An Automatic Method for Solving Dis-
crete Programming Problems, pages 105–132. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2010.

References 175

[118] J. Lee and S. Leyffer. Mixed Integer Nonlinear Programming, volume 154
of The IMA Volumes in Mathematics and its Applications. Springer New
York, New York, NY, 2012.

[119] P. L. Lions and B. Mercier. Splitting algorithms for the sum of two
nonlinear operators. SIAM Journal on Numerical Analysis, 16(6):964–
979, 1979.

[120] J. Löfberg. YALMIP : A toolbox for modeling and optimization in MAT-
LAB. In In Proceedings of the CACSD Conference, Taipei, Taiwan, 2004.

[121] J. Malmborg and J. Eker. Hybrid control of a double tank system. In
Proceedings of the 1997 IEEE International Conference on Control Ap-
plications, pages 133–138, October 1997.

[122] H. Markowitz. Portfolio selection. The Journal of Finance, 7(1):77–91,
1952.

[123] J. Mattingley and S. Boyd. Real-time convex optimization in signal pro-
cessing. IEEE Signal Processing Magazine, 27(3):50–61, May 2010.

[124] J. Mattingley and S. Boyd. CVXGEN: A code generator for embedded
convex optimization. Optimization and Engineering, 13(1):1–27, 2012.

[125] S. Mehrotra. On the implementation of a primal-dual interior point
method. SIAM Journal on Optimization, 2(4):575–601, 1992.

[126] H. Mittelmann. Benchmarks for optimization software.
http://plato.asu.edu/bench.html. Accessed: 2017-11-23.

[127] C. Moler and C. Van Loan. Nineteen dubious ways to compute the expo-
nential of a matrix. SIAM Review, 20:801–836, 1978.

[128] C. Moler and C. Van Loan. Nineteen dubious ways to compute the ex-
ponential of a matrix, twenty-five years later. SIAM Review, 45(1):3–49,
2003.

[129] M. Morari and J. H. Lee. Model predictive control: past, present and
future. Computers & Chemical Engineering, 23(4):667 – 682, 1999.

[130] MOSEK ApS. The MOSEK optimization toolbox manual. Version 7.1
(Revision 35), 2015.

[131] N. Murgovski, L. Johannesson, J. Sjöberg, and B. Egardt. Component
sizing of a plug-in hybrid electric powertrain via convex optimization.
Mechatronics, 22(1):106–120, 2012.

http://plato.asu.edu/bench.html

176 References

[132] V. V. Naik and A. Bemporad. Embedded mixed-integer quadratic opti-
mization using accelerated dual gradient projection. In 20th IFAC World
Congress, Toulouse, France, 2017.

[133] G. Nannicini and P. Belotti. Rounding-based heuristics for nonconvex
MINLPs. Mathematical Programming Computation, 4(1):1–31, 2012.

[134] G. Nemhauser and L. Wolsey. Computational Complexity, pages 114–145.
John Wiley & Sons, Inc., 1988.

[135] G. L. Nemhauser. Integer programming: a global impact. In EURO
INFORMS, Rome, Italy, 2013.

[136] Y. Nesterov and A. Nemirovskii. Interior-Point Polynomial Algorithms in
Convex Programming. Society for Industrial and Applied Mathematics,
1994.

[137] J. Nocedal and S. J. Wright. Numerical Optimization. Springer Series in
Operations Research and Financial Engineering. Springer, Berlin, 2006.

[138] B. O’Donoghue, E. Chu, N. Parikh, and S. Boyd. Conic optimization
via operator splitting and homogeneous self-dual embedding. Journal of
Optimization Theory and Applications, 169(3):1042–1068, June 2016.

[139] B. O’Donoghue, G. Stathopoulos, and S. Boyd. A splitting method for
optimal control. IEEE Transactions on Control Systems Technology,
21(6):2432–2442, November 2013.

[140] G. Papafotiou, J. Kley, K. G. Papadopoulos, P. Bohren, and M. Morari.
Model predictive direct torque control – part II: Implementation and
experimental evaluation. IEEE Transactions on Industrial Electronics,
56(6):1906–1915, June 2009.

[141] T. Pock and A. Chambolle. Diagonal preconditioning for first order
primal-dual algorithms in convex optimization. In 2011 International
Conference on Computer Vision, pages 1762–1769, November 2011.

[142] D. E. Quevedo, G. C. Goodwin, and J. A. De Doná. Finite constraint set
receding horizon quadratic control. International Journal of Robust and
Nonlinear Control, 14(4):355–377, 2004.

[143] J. B. Rawlings and D. Q. Mayne. Model Predictive Control: Theory and
Design. Nob Hill Publishing, LLC, 2015.

References 177

[144] B. S. Riar, T. Geyer, and U. K. Madawala. Model predictive direct current
control of modular multilevel converters: Modeling, analysis, and experi-
mental evaluation. IEEE Transactions on Power Electronics, 30(1):431–
439, January 2015.

[145] R. T. Rockafellar and R. J.-B Wets. Variational analysis. Grundlehren
der mathematischen Wissenschaften. Springer, 1998.

[146] M. Rubagotti, P. Patrinos, A. Guiggiani, and A. Bemporad. Real-time
model predictive control based on dual gradient projection: Theory and
fixed-point FPGA implementation. International Journal of Robust and
Nonlinear Control, 26(15):3292–3310, 2016.

[147] D. Ruiz. A scaling algorithm to equilibrate both rows and columns norms
in matrices. Technical Report RAL-TR-2001-034, Rutherford Appleton
Laboratory, Oxon, UL, 2001.

[148] S. Sager. On the integration of optimization approaches for mixed-integer
nonlinear optimal control. Habilitationsschrift eingereicht bei der fakultät
für mathematik und informatik, Universität Heidelberg, 2011.

[149] S. Sager. A Benchmark Library of Mixed-Integer Optimal Control Prob-
lems, pages 631–670. Springer New York, New York, NY, 2012.

[150] S. Sager, H. G. Bock, M. Diehl, G. Reinelt, and J. P. Schlöder. Numer-
ical methods for optimal control with binary control functions applied
to a lotka-volterra type fishing problem. In Lecture Notes in Economics
and Mathematical Systems, pages 269–290, Berlin/Heidelberg, 2006. IWR
Universität Heidelberg, Germany, Springer-Verlag.

[151] S. Sager, M. Jung, and C. Kirches. Combinatorial integral approximation.
Mathematical Methods of Operations Research, 73(3):363, 2011.

[152] J. Scoltock, T. Geyer, and U. K. Madawala. A model predictive direct
current control strategy with predictive references for MV grid-connected
converters with LCL-filters. IEEE Transactions on Power Electronics,
30(10):5926–5937, October 2015.

[153] C. Seatzu, D. Corona, A. Giua, and A. Bemporad. Optimal control of
continuous-time switched affine systems. IEEE Transactions on Auto-
matic Control, 51(5):726–741, May 2006.

[154] R. Sinkhorn and P. Knopp. Concerning nonnegative matrices and doubly
stochastic matrices. Pacific Journal of Mathematics, 21(2):343–348, 1967.

178 References

[155] G. Stathopoulos, H. Shukla, A. Szucs, Y. Pu, and C. N. Jones. Operator
splitting methods in control. Foundations and Trends in Systems and
Control, 3(3):249–362, 2016.

[156] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd. OSQP:
An Operator Splitting Solver for Quadratic Programs. ArXiv e-prints,
November 2017, 1711.08013.

[157] B. Stellato, T. Geyer, and P. Goulart. High-speed finite control set model
predictive control for power electronics. IEEE Transactions on Power
Electronics, 32(5):4007–4020, May 2017.

[158] B. Stellato and P. Goulart. High-speed direct model predictive control
for power electronics. In European Control Conference (ECC), pages 129–
134, July 2016.

[159] B. Stellato and P. Goulart. Real-time FPGA implementation of direct
MPC for power electronics. In IEEE Conference on Decision and Control
(CDC), pages 1471–1476, December 2016.

[160] B. Stellato, V. Naik, A. Bemporad, P. Goulart, and S. Boyd. Embedded
mixed-integer quadratic optimization using the OSQP solver. In European
Control Conference (ECC) (Submitted), 2018.

[161] B. Stellato, S. Ober-Blöbaum, and P. Goulart. Optimal control of switch-
ing times in switched linear systems. In IEEE Conference on Decision
and Control (CDC), pages 7228–7233, December 2016.

[162] B. Stellato, S. Ober-Blöbaum, and P. Goulart. Second-order switching
time optimization for switched dynamical systems. IEEE Transactions
on Automatic Control, 62(10):5407–5414, October 2017.

[163] R. A. Stubbs and S. Mehrotra. A branch-and-cut method for 0–1 mixed
convex programming. Mathematical Programming, 86(3):515–532, 1999.

[164] R. Takapoui and H. Javadi. Preconditioning via diagonal scaling. EE364b:
Convex Optimization II Class Project, 2014.

[165] R. Takapoui, N. Moehle, S. Boyd, and A. Bemporad. A simple effective
heuristic for embedded mixed-integer quadratic programming. Interna-
tional Journal of Control, pages 1–11, 2017.

[166] P. J. G. Teunissen. The least-squares ambiguity decorrelation adjustment:
a method for fast GPS integer ambiguity estimation. Journal of Geodesy,
70(1–2):65–82, 1995.

References 179

[167] A. Themelis and P. Patrinos. SuperMann: a superlinearly convergent
algorithm for finding fixed points of nonexpansive operators. ArXiv e-
prints, September 2016, 1609.06955.

[168] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society: Series B, 58(1):267–288, 1996.

[169] P. Tøndel, T. A. Johansen, and A. Bemporad. An algorithm for multi-
parametric quadratic programming and explicit MPC solutions. Auto-
matica, 39(3):489–497, 2003.

[170] F. Ullmann. FiOrdOs: A matlab toolbox for C-code generation for first
order methods. Master’s thesis, ETH Zürich, 2011.

[171] C. Van Loan. Computing integrals involving the matrix exponential.
IEEE Transactions on Automatic Control, 23(3):395–404, 1978.

[172] L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review,
38(1):49–95, 1996.

[173] R. Vanderbei. Symmetric quasi-definite matrices. SIAM Journal on Op-
timization, 5(1):100–113, 1995.

[174] R. Vasudevan, H. Gonzalez, R. Bajcsy, and S. S. Sastry. Consistent ap-
proximations for the optimal control of constrained switched systems—
part 2: An implementable algorithm. SIAM Journal on Control and Op-
timization, 51(6):4484–4503, January 2013.

[175] J. P. Vielma, S. Ahmed, and G. L. Nemhauser. A lifted linear program-
ming branch-and-bound algorithm for mixed-integer conic quadratic pro-
grams. INFORMS Journal on Computing, 20(3):438–450, 2008.

[176] V. Volterra. Variazioni e fluttuazioni del numero d’individui in specie
animali conviventi. Memoria della Reale Accademia Nazionale dei Lincei,
VI(2), 1926.

[177] A. Wächter and L. T. Biegler. On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming.
Mathematical programming, 106(1):25–57, 2006.

[178] Y. Wang and S. Boyd. Fast model predictive control using online opti-
mization. IEEE Transactions on Control Systems Technology, 18(2):267–
278, March 2010.

180 References

[179] Y. Wang, B. O’Donoghue, and S. Boyd. Approximate dynamic program-
ming via iterated bellman inequalities. International Journal of Robust
and Nonlinear Control, 25(10):1472–1496, 2015.

[180] P. Wolfe. The simplex method for quadratic programming. Econometrica,
27(3):382–398, 1959.

[181] S. Wright. Primal-Dual Interior-Point Methods. Society for Industrial
and Applied Mathematics, Philadelphia, 1997.

[182] Xilinx, Inc. Vivado Design Suite User Guide - High-Level Synthesis, 2014.
[183] Xilinx, Inc. Zynq-7000 All Programmable SoC Technical Reference Man-

ual, 2016.
[184] W. Zhang, J. Hu, and A. Abate. On the value functions of the discrete-

time switched LQR problem. IEEE Transactions on Automatic Control,
54(11):2669–2674, November 2009.

[185] F. Zhu and P. J. Antsaklis. Optimal control of hybrid switched systems: A
brief survey. Discrete Event Dynamic Systems, 25(3):345–364, May 2014.

	Introduction
	Approximations to reduce complexity
	Exact solution methods
	Publications

	I Approximations to Reduce Complexity
	Optimal Switching Times for Switched Dynamical Systems
	Switched systems
	Problem statement
	Preliminaries
	Numerical solution method
	Linear switched systems
	Implementation and examples
	Conclusions

	ADP for Integer Optimal Control
	Optimal control of hybrid linear systems
	Dynamic programming
	Approximate dynamic programming
	Bellman inequality
	Iterated Bellman inequalities
	Semidefinite program reformulation

	High-Speed Hybrid MPC for Power Electronics
	Model predictive control in power electronics
	Drive system case study
	Model predictive current control
	Framework for performance evaluation
	Achievable performance in steady-state
	FPGA implementation
	Processor-in-the-loop tests
	Conclusions

	II Exact Solution Methods
	An Operator Splitting Solver for Quadratic Programs
	Introduction
	Optimality conditions
	Solution with ADMM
	Problem data scaling
	Solution polishing
	Parametric programs
	OSQP
	Numerical examples
	Conclusions

	An MIQP Solver based on OSQP
	Introduction
	Branch-and-bound solver based on OSQP
	Exploiting the OSQP solver
	Numerical results
	Conclusions

	Discussion and Outlook
	Approximations to reduce complexity
	Exact solution algorithms

	Notation

	Appendices
	Switching Time Optimization Proofs
	Proof of Theorem 2.1
	Proof of Proposition 2.1

	Variable-Speed Drive Control
	Reference frames
	Physical model of the inverter
	Physical model of the machine
	Complete model of the physical system
	Value function underestimation
	Integer quadratic program reformulation

	OSQP Benchmark Problem Classes
	Random QP
	Equality constrained QP
	Portfolio optimization
	Lasso
	Huber fitting
	Support vector machine

	References

