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Abstract— Switching time optimization arises in finite-
horizon optimal control for switched systems where, given a
sequence of continuous dynamics, we minimize a cost function
with respect to the switching times. In this paper we propose
an efficient method for computing optimal switching times
in switched linear systems. We derive simple expressions for
the cost function, the gradient and the Hessian which can be
computed efficiently online without performing any integration.
With the proposed method, the most expensive computations
are decomposed into independent scalar exponentials which
can be efficiently computed and parallelized. Simulation results
show that our method is able to provide fast convergence and
handle efficiently a high number switching times.

I. INTRODUCTION

Hybrid models commonly arise in several engineering
problems where systems with continuous dynamics interact
with discrete events. Optimal control of hybrid systems
presents several challenges because it involves both contin-
uous and discrete decisions which make the corresponding
optimization problems NP -hard to solve [1]. Switched sys-
tems are a particular class of hybrid systems consisting of
several continuous subsystems where a switching law defines
the active one at each time instant; see [2] for a recent survey.

In the present work we focus on optimal control of au-
tonomous switched systems. In particular, given a sequence
of state dynamics, we study the problem of computing the
optimal switching instants at which the dynamics have to
change in order to minimize a predefined cost function. This
problem is usually referred to as switching time optimization.

This topic has been studied extensively in the last decade.
In [3] the authors provide a method to construct an offline
mapping of the optimal switching times from the initial state
of the system. The switching order is given by a so called
“master algorithm” solving a integer optimization problem
at a higher level. Even if the switching time optimization
is reduced to a simple function evaluation, this approach
suffers from the high storage requirements typical of explicit
control approaches [4] as the dimension of the system and
the number of switchings increase.

More recent approaches focus on finding optimal switch-
ing times using iterative optimization methods. In [5] an
expression for the gradient of the cost function with respect
to the switching times is derived for the case of nonlinear sys-
tems. A first-order method based on Armijo step sizes is then
adopted to find the optimal switching times. An extension
for discrete-time nonlinear systems is given in [6]. However,
first order methods are very sensitive to the problem data and
they can exhibit slow convergence [7]. In [8] an expression
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for the Hessian of the cost function is derived for nonlinear
dynamics and a second-order method is adopted to find the
optimal switching times showing significant improvements
on the number of iterations compared to the first-order
method in [5]. However, both these first and second-order
approaches suffer from the computational complexity of mul-
tiple numerical integrations required to solve the differential
equations used to define the cost function, the gradient and
the Hessian (in the second-order case). Note that the Hessian
definition in [8] requires an additional number of integrations
to be performed.

To tackle the computational complexity, in [9] the switch-
ing time optimization problem for linear time-varying dy-
namics is formulated so that only a set of differential
equations needs to be solved before the optimization proce-
dure. Once the integration is performed, the steepest descent
direction can be computed directly without solving any dif-
ferential equation. However, in [9] no closed form expression
for the Hessian of the cost function is provided and only a
steepest descent algorithm is adopted.

In this work we present an efficient method to formulate
and solve switching time optimization problems for switched
linear systems. We develop efficiently computable expres-
sions for the cost function, the gradient and the Hessian
with respect to the switching times. We show that the most
expensive computations required to evaluate the cost function
and its first and second derivatives are the same and can
be greatly simplified through precomputations. With the
proposed method, there is no need to perform any integration
and the most expensive operations are just independent
scalar exponentials which can be efficiently computed and
parallelized.

We also proposed an extension of this work to nonlinear
systems in [10] where the optimization variables are the
switching intervals. The results in [10] have been imple-
mented in the Julia package SwitchTimeOpt.jl leading
to up to two orders of magnitude improvements with respect
to the results appearing in this paper.

The rest of the paper is organized as follows. Section II de-
fines the switching time optimization problem. In Section III
the state evolution and its first and second derivatives are
presented. In Section IV we derive the expressions for the
cost function, the gradient and the Hessian. Efficient methods
to perform the operations shared between J(τ), ∇J(τ) and
HJ(τ) are provided in Section V. Extensions of our method
are shown in Section VI. We provide two numerical examples
in Section VII and conclusions in Section VIII.

II. PROBLEM STATEMENT

Consider a switched autonomous linear system switch-
ing N times in the time window t ∈ [0, T ]. Let us de-
fine a switching sequence {τi}Ni=1 described by the vector
τ =

[
τ1 . . . τN

]> ∈ RN . To simplify the derivations we



define the extrema of our time interval as τ0 := 0 and
τN+1 := T . Our goal is to find, given a sequence of switched
dynamics, the optimal switching times τ? minimizing the
cost function

J(τ) =
1

2

∫ T

0

‖x(t, τ)‖2Qdt =
1

2

∫ T

0

x(t, τ)>Qx(t, τ)dt,

(1)
where x(t, τ) ∈ Rnx is the state of the system. Note that τ0
and τN+1 are not optimization variables. Q = Q> ∈ Snx

+ is
a symmetric positive semidefinite matrix.

The optimal switching times problem can be written as
minimize J(τ)

subject to ẋ(t) = Aix(t), t ∈ [τi, τi+1), i = 0, . . . , N

x(0, τ) = x0

τ ∈ T (0, T ).

(2)

The initial state of the system is x0 ∈ Rnx . The set T (0, T )
is the truncated monotone cone of dimension N

T (0, T ) =
{
τ ∈ RN | 0 ≤ τ1 ≤ · · · ≤ T

}
. (3)

Note that consecutive switching times are allowed to coin-
cide when the optimal solution neglects certain dynamics and
modifies the switching order. This idea has been proposed
in [11] and we will adapt it to our method in Section VI.

The function J(τ) is in general not convex, but it is
continuously differentiable [12] and its first and second
derivatives can be used efficiently within a SQP or Interior
Point method to obtain locally optimal switching times. In
order to obtain a real-time implementable algorithm, we
will derive tractable formulations of the cost function J(τ),
its gradient ∇J(τ) and its Hessian HJ(τ) that exploit the
particular linear structure.

III. STATE EVOLUTION AND DERIVATIVES

The state trajectory at time t can be computed starting
from switching instant τi with T ≥ t ≥ τi as

x(t, τ) = Φ(t, τi, τ)x(τi, τ), (4)
where Φ is the state transition matrix defined for this
switched system as

Φ(t, τi, τ) := eA`(t−τ`)eA`−1(τ`−τ`−1) · · · eAi(τi+1−τi), (5)
where ` is the last switching before time t. The initial state
is defined as x(0, τ) := x0.

Lemma 1 (First Derivative of State Evolution). The deriva-
tive of the state with respect to switching time τi with
i = 1, . . . , N can be written in terms of the state at time
τi as

dx(t, τ)

dτi
=

{
0 t < τi

Φ(t, τi, τ)(Ai−1 −Ai)x(τi, τ) t ≥ τi.
(6)

Proof. For t < τi the state trajectory does not depend on the
switching time, hence the derivative is zero. For t ≥ τi, it is
necessary to differentiate Equation (4) using the chain rule
dx(t, τ)

dτi
=

dΦ(t, τi, τ)

dτi
x(τi, τ) + Φ(t, τi, τ)

dx(τi, τ)

dτi
= −AiΦ(t, τi, τ)x(τi, τ) + Φ(t, τi, τ)Ai−1x(τi, τ)

= Φ(t, τi, τ)(Ai−1 −Ai)x(τi, τ),

where in the second equality we made use of the definition
of the state transition matrix from (5). �

In order to implement a second-order optimization tech-
nique such as SQP or Interior Point methods, we also require
the second derivative.

Lemma 2 (Second Derivative of State Evolution). The
second derivative of the state evolution x(t, τ) with respect
to switching instants τi and τj with i, j = 1, . . . , N is
d2x(t, τ)

dτidτj
=

=



0 t < τj

Φ(t, τi,τ)(A2
i−1 +A2

i+

− 2AiAi−1)x(τi, τ) if t ≥ τj ∧ i = j

Φ(t, τj ,τ)(Aj−1 −Aj)Φ(τj , τi, τ)·
· (Ai−1 −Ai)x(τi, τ) if t ≥ τj ∧ i < j.

(7)

Proof. To obtain the second derivative we differentiate Equa-
tion (6) with respect to τj . If t < τj , the state trajectory, and
hence its derivative, do not depend on τj . Thus, in that case
the second derivative is zero. When t ≥ τj , we will consider
separately the two cases when i and j coincide or not. When
i = j, we apply the chain rule to (6) obtaining
d2x(t, τ)

dτ2
i

=
dΦ(t, τi, τ)

dτi
(Ai−1 −Ai)x(τi, τ)+

+ Φ(t, τi, τ)(Ai−1 −Ai)
dx(τi, τ)

dτi
= Φ(t, τi, τ)(A2

i−1 +A2
i − 2AiAi−1)x(τi, τ),

where the second equality comes from the definition of the
state transition matrix in (5). In the case when i 6= j, we
consider only i < j since the case when i > j can be derived
by swapping i and j. We can differentiate Equation (6) with
respect to τj to obtain
d2x(t, τ)

dτjdτi
=

d

dτj
(Φ(t, τi, τ)(Ai−1 −Ai)x(τi, τ))

=
d

dτj
(Φ(t, τj , τ)Φ(τj , τi, τ)) (Ai−1 −Ai)x(τi, τ)

= Φ(t, τj , τ)(Aj−1 −Aj)Φ(τj , τi, τ)(Ai−1 −Ai)x(τi, τ).

�

IV. COST FUNCTION, GRADIENT AND HESSIAN

Having obtained the state evolution derivatives with re-
spect to the switching times in Section III, we are now in the
position to compute the required derivatives of the objective
function J(τ).

Before computing the function and its derivative we need
to define the following matrix expression, which we will use
heavily in the remainder of the paper.

Definition 1. Given a switching sequence τ and two instants
τa, τb with τa ≤ τb, we define P (τb, τa, τ) ∈ Sn+ being the
following symmetric positive semidefinite matrix

P (τb, τa, τ) :=

∫ τb

τa

Φ(t, τa, τ)>QΦ(t, τa, τ)dt, (8)

where Φ(t, τa, τ) is the state transition matrix defined in (5).

The cost function J(τ) is a quadratic function of the initial
state x0 and, by plugging (4) in (1), can be written as

J(τ) =
1

2
x>0 P (T, 0, τ)x0 (9)



where we made use of Definition 1.

A. Gradient and Hessian Derivations

In the following two results we will derive the expressions
for the gradient and the Hessian of the cost function.

Proposition 1 (Gradient ∇J(τ)). The gradient of the cost
function J(τ)

∇J(τ) =
[

dJ(τ)
dτ1

· · · dJ(τ)
dτN

]>
(10)

can be computed as

∇J(τ)i =
dJ(τ)

dτi
= x(τi, τ)>P (T, τi, τ)(Ai−1 −Ai)x(τi, τ).

(11)

Proof. Let us focus on rewriting the first derivative of the
cost function with respect to a single switching time τi.

dJ(τ)

dτi
=

d

dτi

(
1

2

∫ τi

0

‖x(t, τ)‖2Qdt

)
+

d

dτi

(
1

2

∫ T

τi

‖x(t, τ)‖2Qdt

)
=

1

2
‖x(τi, τ)‖2Q

− 1

2
‖x(τi, τ)‖2Q +

∫ T

τi

d

dτi

(
1

2
‖x(t, τ)‖2Q

)
dt

=

∫ T

τi

x(t, τ)>Q
dx(t, τ)

dτi
dt. (12)

The first term has been rewritten using the fundamental
theorem of calculus by noting that x(t, τ) does not depend
on τi for t < τi, while the second one using the Leibniz
rule for integral differentiation. We can now plug in the state
evolution (4) and its first derivative with respect to τi from (6)
obtaining

dJ(τ)

dτi
= x(τi, τ)>

(∫ T

τi

Φ(t, τi, τ)>Q·

· Φ(t, τi, τ)dt
)

(Ai−1 −Ai)x(τi, τ)

= x(τi, τ)>P (T, τi, τ)(Ai−1 −Ai)x(τi, τ),

which completes the proof. �

Remark 1. Note that p(τi) = P (T, τi, τ)x(τi, τ) corre-
sponds to the costate definition in [5]. This relationship can
be seen by noting that p(T ) = 0 and taking its derivative
with respect to τi making use of the Leibniz rule for integral
differentiation.

dp(τi)

dτi
= −A>i p(τi)−Qx(τi, τ), (13)

which corresponds to Equation (11) in [5].

Proposition 2 (Hessian HJ(τ)). The Hessian HJ(τ) of the
cost function can be computed as

HJ(τ)i,j =
d2J(τ)

dτidτj

=



x(τi, τ)>
(
−Q(Ai−1 −Ai)+

+ (Ai−1 −Ai)> P (T, τi, τ) (Ai−1 −Ai) +

+ P (T, τi, τ)·

· (A2
i−1 +A2

i − 2AiAi−1)
)
x(τi, τ), if i = j

x(τi, τ)>(Ai−1 −Ai)>Φ(τj , τi, τ)>·
·
(
P (T, τj , τ)(Aj−1 −Aj)+

+ (Aj−1 −Aj)>P (T, τj , τ)
)
x(τj , τ) if i < j

(14)
where i, j = 1, . . . , N .

Proof. Let us consider first the case in which i = j. The
second derivative of the cost function can be computed by
differentiating (12) with respect to τi

d2J(τ)

dτ2
i

=
d

dτi

(∫ T

τi

x(t, τ)>Q
dx(t, τ)

dτi
dt

)

= − x(τi, τ)>Q
dx(τi, τ)

dτi
+

+

∫ T

τi

dx(t, τ)

dτi

>
Q

dx(t, τ)

dτi
+

+ x(t, τ)>Q
d2x(t, τ)

dτ2
i

dt,

where we applied the Leibniz rule for integral differentiation
and the chain rule. We can now combine the first (6) and the
second (7) derivatives of the state trajectory obtaining

d2J(τ)

dτ2
i

= −x(τi, τ)>Q(Ai−1 −Ai)x(τi, τ)+

+ x(τi, τ)>(Ai−1 −Ai)>·

·

(∫ T

τi

Φ(t, τi, τ)>QΦ(t, τi, τ)dt

)
(Ai−1 −Ai)x(τi, τ)+

+ x(τi, τ)>

(∫ T

τi

Φ(t, τi, τ)>QΦ(t, τi, τ)dt

)
·

· (A2
i−1 +A2

i − 2AiAi−1)x(τi, τ)

= x(τi, τ)>
(
−Q(Ai−1 −Ai)+

+ (Ai−1 −Ai)> P (T, τi, τ) (Ai−1 −Ai) +

+ P (T, τi, τ)(A2
i−1 +A2

i − 2AiAi−1)
)
x(τi, τ).

In the last equality we made use of Definition 1.
When i < j, we consider the first derivative (12) with

respect to τj and we differentiate it with respect to τi

d2J(τ)

dτidτj
=

d

dτi

(∫ T

τj

x(t, τ)>Q
dx(t, τ)

dτj
dt

)

=

∫ T

τj

dx(t, τ)

dτi

>
Q

dx(t, τ)

dτj
+ x(t, τ)>Q

d2x(t, τ)

dτidτj
dt.



We can now apply the first (6) and the second (7) derivatives
of the state trajectory obtaining

d2J(τ)

dτidτj
= x(τi, τ)>(Ai−1 −Ai)>Φ(τj , τi, τ)>·

·

(∫ T

τj

Φ(t, τj , τ)>QΦ(t, τj , τ)dt

)
·

· (Aj−1 −Aj)x(τj , τ)+

+ x(τj , τ)>

(∫ T

τj

Φ(t, τj , τ)>QΦ(t, τj , τ)dt

)
·

· (Aj−1 −Aj)Φ(τj , τi, τ)(Ai−1 −Ai)x(τi, τ)

= x(τi, τ)>(Ai−1 −Ai)>Φ(τj , τi, τ)>
(
P (T, τj , τ)·

· (Aj−1 −Aj) + (Aj−1 −Aj)>P (T, τj , τ)
)
x(τj , τ).

Where the first equality comes from decomposing
Φ(t, τi, τ) = Φ(t, τj , τ)Φ(τj , τi, τ). The second equality
above is obtained by transposing the second term of the
sum (which is a scalar) and by using Definition 1. �

V. OPERATIONS SHARED BY J(τ), ∇J(τ) AND HJ(τ)

Regardless of the second-order optimization method em-
ployed, many of the numerical operations needed to compute
J(τ),∇J(τ) and HJ(τ) at each iteration are the same. Thus,
it is necessary to perform these computations only once per
iteration.

A. Matrix Exponentials

For several of the operations described in Section IV we
need to compute the matrix exponentials for each interval of
the switching sequence

Ei = eAi(τi+1−τi), i = 0, . . . , N. (15)

Even though computing a matrix exponential is not a trivial
operation to perform at every iteration step, the matrices
Ai, i = 0, . . . , N are always the same and only the time
intervals change.

We assume that matrices Ai are diagonalizable (i.e. semi-
simple) in the form Ai = T>i ΛiTi, where Ti ∈ Rnx×nx

are the nonsingular matrices of right eigenvectors and
Λi ∈ Rnx×nx are the diagonal matrices of the eigenvalues.
Note that if the matrices are not semi-simple it is possible
to apply small perturbations in order to obtain nonsingular
Ti matrices. We can then, precompute the matrices decom-
position Ti and T−1

i and obtain the matrix exponentials at
each iteration as simple scalar exponentials of the elements
on the diagonal of Λi:

Ei = T−1
i eΛi(τi+1−τi)Ti. (16)

Note that the scalar exponentials are independent and can be
computed in parallel to minimize the computation times.

B. Matrices P

To obtain the cost function and its first and second
derivatives, we need to compute matrix P (T, τi, τ) for
i = 0, . . . , N as defined in (1).

We can decompose the integral in a sum for every interval
between consecutive switching times

P (T, τi, τ) =

N∑
k=i

∫ τk+1

τk

Φ(t, τi, τ)>QΦ(t, τi, τ)dt

=

N∑
k=i

Φ(τk, τi, τ)>
(∫ τk+1

τk

Φ(t, τk, τ)>Q·

· Φ(t, τk, τ)dt

)
Φ(τk, τi, τ).

(17)

We now define the matrices solutions of the matrix expo-
nentials between parenthesis as Mk

Mk :=

∫ τk+1

τk

Φ(t, τk, τ)>QΦ(t, τk, τ)dt

=

∫ τk+1−τk

0

eA
>
k ηQeAkηdη,

where we applied the substitution η = t−τk. We can rewrite
the integral by parts as

eA
>
k ηQeAkη

∣∣∣τk+1−τk

0
= A>k

(∫ τk+1−τk

0

eA
>
k ηQeAkηdη

)
+

+

(∫ τk+1−τk

0

eA
>
k ηQeAkηdη

)
Ak.

(18)
It is straightforward to notice that matrices Mk can be
computed by solving the Lyapunov equation

A>kMk +MkAk + Q̃k = 0 (19)
with Q̃k = Q − E>k QEk. Equation (19) can be solved as
a linear system by vectorizing the matrices using the vec(·)
operator. By noting the property of the vector operator of the
product of three matrices vec(ABC) = (C> ⊗A) vec(B)
where ⊗ denotes the Kronecker product, we can rewrite (19)
as

(Inx
⊗A>k +A>k ⊗ Inx

) vec(Mk) = − vec(Q̃k), (20)
where Inx

is the identity matrix of dimension nx. We can
now combine (19) and solve (20) obtaining

vec(Mk) = K−1
k vec

(
E>k QEk −Q

)
, (21)

where K−1
k = (Inx ⊗A>k +A>k ⊗ Inx)−1.

Observe that the solution to (20) exists and is unique if
and only if the matrices A>k and −A>k have no common
eigenvalues [13]. Thus, we can invert matrix Kk if and only
if Ak has no zero eigenvalues, i.e. is nonsingular. In practice
we can add small perturbations to matrices Ak to make sure
the inversion is stable.

Matrices K−1
k depend only on individual linear dynamics

k and can be precomputed offline. After computing the
matrix exponentials Ek, online we need only to compute
the vector vec

(
E>k QEk −Q

)
and multiply it by K−1

k as in
Equation (21) to obtain Mk for k = 0, . . . , N .

Finally, we can compute matrices P (T, τi, τ). From (5),
matrix Φ(τk, τi, τ) in (17) is just a product of the matrix
exponentials precomputed in (16): Φ(τk, τi, τ) =

∏k−1
p=i Ep

if k > i or Φ(τi, τi, τ) = Inx
. Note that the matrices in the

product are multiplied right to left with increasing index p.
By noting that P (T, τN , τ) = MN , we can compute all the

other matrices matrices recursively with i = N − 1, . . . , 0:
P (T, τi, τ) = Mi + E>i P (T, τi+1, τ)Ei. (22)



C. Operations Required at Every Iteration
Exploiting the precomputation in Sections V-A and V-B

we require the following operations to be performed at each
iteration of the optimization algorithm:

1) Compute matrix exponentials Ei for i = 0, . . . , N as
in Equation (16). This operation requires only scalar
exponentials and two matrix multiplications for every i.

2) Compute the Lyapunov equations’ solutions Mk for
k = 0, . . . , N as in Equation (21). This operation in-
volves just three matrix products and a subtraction for
every k.

3) Compute integrals P (T, τi, τ) for i = 0, . . . , N using
Equation (22) consisting in two matrix multiplications
and one addition for every i.

The cost function J(τ), the gradient ∇J(τ) and the Hes-
sian HJ(τ) can be then computed using Equations (9), (11)
and (14) by simple matrix multiplications and additions.

Note that at each iteration the value of the state at
the switching times can be directly computed using the
recursion: x(τi+1, τ) = Eix(τi, τ) with i = 0, . . . , N .

VI. EXTENSIONS

A. Affine Models
Affine models of the form

ẋ(t) = Aix(t) + fi, t ∈ [τi, τi+1), i = 0, . . . , N, (23)

can be casted as switched linear models by augmenting the
state-space from Rnx to Rnx+1, see [3]. The augmentation
can be written as[
ẋ(t)
˙̃x(t)

]
=

[
Ai fi
0 0

] [
x(t)
x̃(t)

]
, t ∈ [τi, τi+1), i = 0, . . . , N,

with x̃(0) = 1. The weighting matrix Q has to be replaced
by matrix Q̃ = blkdiag(Q, 0). This augmentation causes the
dynamics matrices to become singular, which bring problems
in the inversion in Equation (21). However, as noted in
Section V, we can perturb the newly obtained dynamics to
make sure the computations are numerically stable. Note that
dynamical models in this form encompass a wide class of
systems including linear systems with integer inputs.

B. Changing Switching Order
The feasible set defined in (3) is a truncated monotone

cone where the switching instants keep a predefined switch-
ing sequence. For this feasible set, consecutive switching
times are allowed to coincide, i.e. τi+1 = τi, meaning that
the dynamics directly switch from i − 1 to i + 1 without
passing through i. This behavior allows the solver to discard
some dynamics and adapt the switching sequence without
recourse to integer optimization problems.

Following the idea in [11], this observation allows us to
obtain the optimal switching sequence online by extending
the optimization problem. Given N + 1 possible continuous
dynamics i = 0, . . . , N switching without any predefined
order, we can construct a bigger problem with ns(N + 1)−
1 switching times composed of ns consecutive switching
sequences from dynamics i = 0 to N ; see Figure 1.

In this way the solver has access to all the possible
switching combinations of the dynamics to find a local
optimum without any constraint on the switching order. Note

0 τ1 τN τN+1 τ(ns−1)(N+1) τns(N+1)−1 T

A0 · · · AN · · · A0 · · · AN

Fig. 1: Repeating switching times sequence allowing to change the ordering
of the dynamics

that this approach is not guaranteed to find the optimal
switching sequence since the problem is not convex and we
are computing a locally optimal solution.

However, this extension gives a much higher degree of
flexibility compared to methods with a single predefined
switching sequence iterating over the dynamics. Moreover,
thanks to our inexpensive formulations of the cost function
and its derivatives, even though the number of switching
times increases, this approach presents lower computational
burden compared to methods where mixed-integer control
problems need to be solved to find the optimal sequence.

VII. EXAMPLES

To demonstrate the implementation ease and the efficiency
of our method we program our definitions of the cost func-
tion and its first and second derivatives as function callbacks
to the Interior Point solver IPOPT [14] on MATLAB on a
Macbook Pro with Intel Core i7. No integration routine is
required. Note that the implementation could be made even
more efficient by writing the function callbacks in C++.

A. Unstable Switched Dynamics

Consider the switched system from [9] described by the
two unstable dynamics

A1 =

[
−1 0
1 2

]
and A2 =

[
1 1
1 −2

]
. (24)

Note that A1 and A2 have no common eigenvectors. The
system transitions happen N = 5 times between 0 and
T = 1 according to the modes sequence {1, 2, 1, 2, 1, 2}
and the cost function matrix is Q = I2. Without any
integration routine our approach converges to precision
10−8 in 8 iterations to the optimal switching times
τ? =

[
0.100 0.297 0.433 0.642 0.767

]>
which correspond

to the same solution obtained in [9]. The total execution time
is 175 ms of which 75 ms used by the IPOPT routine and
100 ms by MATLAB functions callbacks.

B. One Phase of a Three-Level Inverter with RL-load

Consider a simplification of the power inverter model
in [15] where only a single-phase is considered attached to
the neutral point N . We assume the DC-link voltage Vdc
to be constant and the integer control inputs u ∈ {−1, 0, 1}
describing the phase switches positions producing voltages
−Vdc/2, 0 and Vdc/2 respectively. The system state is the
current i(t) through the load with dynamics being

di(t)

dt
= −R

L
i(t) +

1

L

Vdc
2
u(t). (25)

R is the resistance and L the inductance of the load. The
objective consists in tracking a perfect sinusoidal current
i∗(t) oscillating at frequency ω. Following the approach
in [16] we can write the optimal current tracking problem
in the form of a state regulation problem by adding two
oscillating states. By applying the extension in Section VI-A
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Fig. 2: Current Tracking Behavior for number of switchings N = 25
(dashed-dotted blue line), N = 50 (dashed red line) and N = 100 (solid
yellow line).

we can add a further additional state to obtain the following
autonomous switched dynamics:

dx(t)

dt
=

−
R
L 0 0 1

L
Vdc

2 ui
0 0 −ω 0
0 ω 0 0
0 0 0 0


︸ ︷︷ ︸

Ai

x(t), y(t) =
[
1 −1 0 0

]︸ ︷︷ ︸
C

x(t)

(26)
where matrices Ai are defined by the three possible control
input variables ui ∈ {−1, 0, 1}. The tracking problem
minimizing the norm of the difference i(t) − i∗(t) can be
reconstructed by minimizing the quadratic function in (1)
with matrix Q = C>C; see [16].

We simulate the power inverter with parameters R = 2 Ω,
L = 2 mH, Vdc = 5.2 kV and frequency ω = 2π50 rad/sec.
The system is represented in the per unit system (pu)
with base current IB =

√
2IR and rated current IR =

356 A; see [15] for more details. In this way the magnitude
of sinusoid i∗ is 1. The initial state of the system is
x̃(0) =

[
0 0 −1 1

]>
.

The number of switches is chosen to be 98 so that the
switched dynamics iterate over the three modes 33 times.
We choose a time window between 0 and T = 5 ms equal
to a quarter of the sinusoid. We choose this particular time
window because it is normally used in approaches where
the optimal switching patterns are computed offline [17]
and then, according to the system symmetries, the optimal
switchings and mode sequence are replicated over the whole
period of the sinusoid.

Our approach converges in 18 iterations to locally optimal
switchings up to precision 10−6 in 6.58 sec of which 74 ms
and 6.50 sec are the times required by IPOPT and the
function callbacks, respectively. The returned minimum is
J(τ ) = 4.53 · 10−4.

Since this is a time-varying reference tracking problem,
there exists no constant input that could track the sinusoid
perfectly. Hence, we would like the number of switchings to
be as high as possible to produce perfect sinusoids. A plot
of this behavior for N = 25, 50 and 100 switching times is
displayed in Figure 2.

We solved the switching time optimization problem with
an increasing number of switchings N from 2 to 150
obtaining higher accuracy. Even though the computations
increase, the number of iterations only grows logarithmically
as shown in Figure 3.

VIII. CONCLUSION

In this paper we proposed a novel efficient second-order
method to formulate and solve switching time optimization
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Fig. 3: Number of iterations required per number of switchings.

problems for switched linear systems with no integrations
required. We derived efficiently computable expressions for
the cost function, the gradient and the Hessian for which
most of the computations are the same and can be greatly
simplified. With our approach, the most expensive compu-
tations are reduced to individual independent parallelizable
scalar exponentials. We provide two simulation examples
showing the fast convergence of our method and its ability
to handle more than a hundred switching times. Future
improvements can be obtained by implementing a tailored
solver to the particular structure of our formulation providing
further reductions in the execution time.
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[14] A. Wächter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear program-
ming,” Mathematical programming, vol. 106, no. 1, pp. 25–57, 2006.

[15] T. Geyer and D. E. Quevedo, “Multistep Finite Control Set Model
Predictive Control for Power Electronics,” IEEE Trans. on Power
Electronics, vol. 29, no. 12, pp. 6836–6846.

[16] B. Stellato, T. Geyer, and P. J. Goulart, “High-Speed Finite Control
Set Model Predictive Control for Power Electronics,” IEEE Trans. on
Power Electronics (To appear), 2016.

[17] J. Holtz and B. Beyer, “Fast current trajectory tracking control based
on synchronous optimal pulsewidth modulation,” IEEE Trans. on
Industry Applications, vol. 31, no. 5, pp. 1110–1120, 1995.


