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Abstract— Common approaches for direct model predictive
control (MPC) for current reference tracking in power elec-
tronics suffer from the high computational complexity en-
countered when solving integer optimal control problems over
long prediction horizons. We propose an efficient alternative
method based on approximate dynamic programming, greatly
reducing the computational burden and enabling sampling
times under 25µs. Our approach is based on the offline
minimization of an infinite horizon cost function estimate which
is then applied to the tail cost of the MPC problem. This allows
us to reduce the controller horizon to a very small number of
stages improving overall controller performance. Our proposed
algorithm is validated on a variable speed drive system with a
three-level voltage source converter.

I. INTRODUCTION

Among the control strategies adopted in power electronics,
model predictive control (MPC) [1] has recently gained
popularity due to its various advantages [2]. MPC has been
shown to outperform traditional control methods because of
its ease in handling time-domain constraint specifications
and its applicability to general power systems topologies and
operating conditions.

In power electronics, many conventional control strate-
gies are based on proportional-plus-integral (PI) controllers
providing continuous input signals to a modulator, which
manages conversion to discrete switching positions. Direct
MPC [3] instead combines the current control and mod-
ulation into a single computational problem, providing a
powerful alternative to conventional PI controllers. With
direct MPC, the manipulated variables are the switch po-
sitions, which lie in a discrete and finite set, giving rise to a
switched system. Therefore, this approach does not require a
modulator and is often referred to as finite control set MPC.

Since the manipulated variables are restricted to be in-
tegers, the optimization problem underlying direct MPC is
provably NP-hard [4]. Consequently, direct MPC rapidly
becomes intractable for real-time applications as the hori-
zon length is increased. Despite attempts to overcome the
computational burden of these methods [5], the problem
remains open to allow implementation of these algorithms
on embedded systems.

A recent technique introduced in [6] and benchmarked
in [7], reduces the computational burden of direct MPC
when increasing the prediction horizon. In that work the opti-
mization problem was formulated as an integer least-squares
(ILS) problem and solved using a tailored branch-and-bound
algorithm, described as sphere decoding [8]. Although this
approach appears promising relative to previous work, the
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computation time required to perform the sphere decoding
algorithm for long horizons (i.e. N = 10), is still far slower
than the sampling time typically required, i.e. Ts = 25µs.

This paper introduces a different method to deal with the
direct MPC problem. In contrast to common formulations [9]
where the switching frequency is controlled indirectly via
penalization of the input switches over the controller horizon,
in this work the system dynamics are augmented to directly
estimate the switching frequency and to penalize its devia-
tions from the desired value. To address the computational
issues of long prediction horizons, we formulate the tracking
problem as a regulation one by augmenting the state dynam-
ics and cast it in the framework of approximate dynamic
programming (ADP) [10]. The infinite horizon tail cost is
approximated using the approach in [11] and [12] by solving
a semidefinite program (SDP) [13] offline. This enables us to
shorten the controller horizon by applying the estimated tail
cost to the last stage and to keep good control performance.

Simulation results show that with our method, even very
short prediction horizons exhibit better performance than the
approach in [7] and [6] with much longer planning horizons,
while drastically reducing the computational burden. This
approach has also been implemented in [14] on a small size
FPGA running comfortably within 25µs sampling time.

As a case study, our proposed approach is applied to the
variable-speed drive system in [6] consisting of a three-level
neutral point clamped voltage source inverter connected to a
medium-voltage induction machine. The plant is modeled as
a linear system with a switched three-phase input with equal
switching steps for all phases.

The remainder of the paper is organized as follows. In
Section II we describe the drive system case study and sketch
the physical model. In Section III the direct MPC problem is
derived by augmenting the state dynamics and approximating
the infinite horizon tail cost using ADP. Finally, we show the
simulation results on the derived model in Section IV and
provide conclusions in Section V.

II. DRIVE SYSTEM CASE STUDY

In this work we consider a variable speed drive system
consisting of a three-level neutral point clamped (NPC) volt-
age source inverter driving a medium-voltage (MV) induction
machine shown in Figure 1. The total dc-link voltage Vdc is
assumed to be constant and the neutral point potential N
fixed.

The input variables are chosen to be the switch positions in
the three-phase legs of the inverter, i.e. usw =

[
ua ub uc

]>
with ua, ub, uc ∈ {−1, 0, 1}. We define the model of the
induction motor and the drive in terms of the stator currents
is and the rotor fluxes ψr in the αβ plane. The dynamics
can be expressed as the following discrete-time linear time

2016 European Control Conference
June 29 - July 1, 2016. Aalborg, Denmark

978-1-5090-2590-9 ©2016 EUCA 129



GEYER AND QUEVEDO: MULTISTEP FINITE CONTROL SET MPC FOR POWER ELECTRONICS 6837

cost is chosen as the optimal one. Enumeration is sometimes
perceived as an “easy” task; this is a misconception since enu-
meration is applicable only to MPC problems featuring a limited
number of switching sequences. Exhaustive enumeration is not
practical for problems with thousands of sequences, which arise
from MPC formulations with prediction horizons of four or
more.

Motivated by the observations made previously, this paper ex-
amines the use of prediction horizons longer than one for direct
MPC with reference tracking. To address computational issues,
our work exploits the geometrical structure of the underlying
optimization problem and presents an efficient optimization al-
gorithm. The algorithm uses elements of sphere decoding [35] to
provide optimal switching sequences, requiring only little com-
putational resources. This enables the use of long prediction
horizons in power electronics applications.

The proposed computational approach is derived for a linear
system with a switched three-phase input with equal switching
steps in all phases. Specifically, the present work focuses on a
variable speed drive system, consisting of a three-level neutral
point clamped voltage source inverter driving a medium-voltage
induction machine. Our results in the analysis part [34] show that
using prediction horizons larger than one does, in fact, provide
significant performance benefits. In particular, at steady-state
operation, the current distortions and/or the switching frequency
can be reduced considerably with respect to direct MPC with
a horizon of one. Indeed, in some cases, a steady-state perfor-
mance can be achieved that is similar to the one of optimized
pulse patterns [36].

In summary, the contribution of this paper and its analysis
part [34] is fourfold, by substantiating the following statements.
First, direct MPC problems with reference tracking and long
prediction horizons can be solved in a computationally efficient
way, by adopting sphere decoding and tailoring it to the problem
at hand. Second, long horizons provide at steady state a better
performance than the horizon one case. Third, long horizons
do not have an adverse impact on the transient performance.
Fourth, the computation time can be further reduced by using
a simple rounding scheme. The latter gives suboptimal results,
which are close to optimal when the switching effort is very
high.

The remainder of this paper is organized as follows. Section II
describes the drive system case study used throughout the two
papers. Section III states the model predictive current control
problem to be solved, which can be cast as an integer QP, as
shown in Section IV. By adopting the notion of sphere decoding,
the integer program can be solved efficiently, as described in
detail in Section V. Conclusions are provided in Section VI.

Throughout the paper, we use normalized quantities and adopt
the per unit (pu) system. Extending this to the time scale t,
one time unit corresponds to 1/ωb s, where ωb is the base
angular velocity. Additionally, we use ξ(t), t ∈ R, to denote
continuous-time variables, and ξ(k), k ∈ N, to denote discrete-
time variables with the sampling interval Ts . All variables
ξabc = [ξa ξb ξc ]

T in the three-phase system (abc) are trans-
formed to ξαβ = [ξα ξβ ]T in the stationary orthogonal αβ co-

Fig. 1. Three-level three-phase neutral point clamped voltage source inverter
driving an induction motor with a fixed neutral point potential.
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II. DRIVE SYSTEM CASE STUDY

While the ideas of this study can be applied to general ac–dc,
dc–dc, dc–ac, and ac–ac topologies with linear loads, including
active front ends, inverters with RL loads and inverters with ac
machines, we focus our exposition on the setup described in the
sequel.

A. Physical Model of the Inverter

As an illustrative example of a medium-voltage power elec-
tronic system, consider a variable speed drive consisting of a
three-level neutral point clamped (NPC) voltage source inverter
(VSI) driving an induction machine (IM), as depicted in Fig. 1.
The total dc-link voltage Vdc is assumed to be constant and the
neutral point potential N is fixed.

Let the integer variables ua , ub , uc ∈ U denote the switch
positions in the three-phase legs, where for a three-level inverter
the constraint set is given by

U △
= {−1, 0, 1} . (2)

In each phase, the values −1, 0, 1 correspond to the phase volt-
ages −Vd c

2 , 0, Vd c

2 , respectively. Thus, the voltage applied to the
machine terminals in orthogonal coordinates is

vs,αβ =
1

2
Vdc uαβ =

1

2
Vdc P u (3)

with

u
△
= [ua ub uc ]

T . (4)

The voltage vectors are shown in Fig. 2.

B. Physical Model of the Machine

The state-space model of a squirrel-cage induction machine
in the stationary αβ reference frame is summarized hereafter.
For the current control problem at hand, it is convenient to
choose the stator currents isα and isβ as state variables. The

Fig. 1. Three-level three-phase neutral point clamped (NPC) voltage source
inverter driving an induction motor with a fixed neutral point potential.
Image taken from [6].

invariant (LTI) system

xph(k + 1) = Aphxph(k) +Bphusw(k)

yph(k) = Cphxph(k),
(1)

where the state vector is xph =
[
is,α is,β ψr,α ψr,β

]
and the

output vector corresponds to the stator currents, i.e. yph =
is. The sampling time is Ts = 25µs. See [6] for a detailed
derivation.

III. MODEL PREDICTIVE CURRENT CONTROL

A. Problem Description

Our control scheme must address two conflicting objec-
tives simultaneously. On one hand, the distortion of the stator
currents is corresponds to ripples in the torque of the motor
that are the main source of mechanical stress on the load
and the bearings. In order to reduce damage to the machine
and the load, the distortion of stator currents must be kept as
low as possible. On the other hand, high frequency switching
of the inputs usw produces high power losses and stress on
the physical devices. To reduce the energy needed and to
preserve the lifespan of the components, we therefore should
minimize the switching frequency of the integer inputs. In
power converters, there is an unavoidable tradeoff between
these two criteria.

In contrast to the common approaches in direct MPC
where the switching frequency is minimized, in this work
we penalize its difference from the desired frequency, de-
noted f∗sw. This is motivated by the fact that drives are
usually designed to run at a specific nominal switching
frequency and the control algorithms are typically tuned to
match this requirement.

The current distortion is measured via the total harmonic
distortion (THD). Given an infinitely long time-domain cur-
rent signal i and its fundamental component i∗ of magni-
tude 1, we define the THD as the ratio between the root
mean square (RMS) of their difference and the RMS of i∗.
Since i∗ is sinusoidal, its RMS value is 1/

√
2. Hence, we

can write the THD as

THD :=
√
2RMS(i− i∗). (2)

It is of course not possible to calculate the THD in real
time within our controller computations because of finite
storage constraints.

The switching frequency of the inverter can be identified
by computing the average frequency of each active semicon-
ductor device. As displayed in Figure 1, the total number of
switches for all three phases is 12, and for every transition
of each phase ua, ub, uc between different adjacent switch
positions one physical device is turned on. Given 2M ∈ N
time steps, it is possible to estimate the switching frequency
of every device by counting the number of on transitions
over the time interval and dividing the sum by the interval’s
length. We can then average over all the physical switches
by dividing the computed fraction by 12. At time k, the
switching frequency estimate can be written as

fsw,M (k) :=
1

12 · 2M · Ts

M∑

i=−M
‖usw(k+i)−usw(k+i−1)‖1,

(3)
that corresponds to a non-causal finite impulse response
(FIR) filter of order 2M . The true average switching fre-
quency is the limit of this quantity as the window length
goes to infinity

fsw := lim
M→∞

fsw,M (k), (4)

and does not depend on time k.
The fsw computation brings issues similar to those of the

THD. In addition to finite storage constraints, the part of
the sum regarding the future signals produces a non-causal
filter that is impossible to implement in a real time control
scheme.

These issues in computing THD and fsw will be addressed
in the following two sections via augmentation of our state
space model to include suitable approximation schemes for
both quantities.

B. Total Harmonic Distortion
By definition, the THD can be minimized by reducing the

effect of the ripples in the produced currents.
The three reference phase sinusoids i∗s are defined in the

normalized per unit (pu) time scale and have shifted phases
(in seconds, these signals oscillate at frequency ωb)

i∗s(k) =
[
sin (k) sin

(
k − 2

3π
)
sin
(
k − 4

3π
)]>

.

It is straightforward to show (see [15]) that the corresponding
reference currents in the αβ reference frame are

i∗s,αβ(k) =
[
sin (k) − cos (k)

]>
. (5)

From the stator currents in αβ frame, the ripples
can be obtained by subtracting the perfect sinusoids
that need to be tracked, producing the error signal
ei(k) := is,αβ(k)− i∗s,αβ(k). In order to minimize a rea-
sonable approximation of the THD defined in (2) for both
dimensions αβ, in our controller we minimize the squared
2-norm of ei for all future time instants. We also introduce
a discount factor γ ∈ (0, 1) to normalize the summation
preventing it from going to infinity in case of persistent error.
The cost function related to THD minimization is, therefore,

∞∑

k=0

γk ‖ei(k)‖22 . (6)

In order to construct a regulation problem, we will include
the oscillating currents from (5) as two additional uncontrol-
lable states xosc = i∗s,αβ within our model of the system
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dynamics. The ripple signal ei(k) is then modeled as an
output defined by the difference between two pairs of system
states.

C. Switching Frequency
To overcome the difficulty of dealing with the filter in (3),

we consider only the past input sequence, with negative time
shift giving a causal FIR filter estimating fsw. This filter is
approximated with an infinite impulse response (IIR) one
whose dynamics can be modeled as a linear time invariant
(LTI) system. Note that future input sequences in (3) will be
taken into account inside the controller prediction.

Let us define three binary phase inputs denoting whether
each phase switching position changed at time k or not,

p(k) =
[
pa(k) pb(k) pc(k)

]> ∈ {0, 1}3, (7)

with ps(k) = ‖us(k)− us(k − 1)‖1 , s ∈ {a, b, c}. It is
straightforward to show that the following second order IIR
filter will approximate the one-sided version of the FIR filter
in (3) [16]:

xflt(k + 1) =

[
a1 0

1− a1 a2

]
xflt(k) +

1− a2
12Ts

[
1 1 1
0 0 0

]
p(k)

f̂sw(k) =
[
0 1
]
xflt(k),

where f̂sw(k) is the estimated switching frequency. The two
poles in a1 = 1− 1/r1 and a2 = 1− 1/r2 with r1, r2 >> 0
can be tuned to shape the behavior of the filter. By increasing
a1, a2, the estimate becomes smoother while decreasing
a1, a2 gives a faster estimation with more noisy values. We
denote the difference between the approximation f̂sw(k) and
the target frequency f∗sw by esw(k) := f̂sw(k)− f∗(k).

Therefore, the quantity to be minimized in order to bring
the switching frequency estimate as close to the target as
possible is

∞∑

k=0

δ · γk ‖esw(k)‖22 , (8)

where δ ∈ R+ is a design parameter included to reflect the
relative importance of this part of the cost relative to the
THD component.

Finally, we can augment the state space to include the
filter dynamics and the target frequency by adding the states[
x>flt f

∗
sw

]>
so that the control inputs try to drive the

difference between two states to zero.

D. MPC Problem Formulation
Let us define the complete augmented state as

x(k) :=
[
xph(k)

> xosc(k)
> xsw(k)

> usw(k − 1)>
]>
,
(9)

with x(k) ∈ R9 × {−1, 0, 1}3 and total state dimension
nx = 12. Vector xph represents the physical system from
Section II, xosc defines the oscillating states of the sinu-
soids to track introduced in Section III-B, usw(k − 1) are
additional states used to keep track of the physical switching
positions at the previous stage and xsw the states related to
the switching filter from Section III-C.

The system inputs are defined as

u(k) :=
[
usw(k)

> p(k)>
]> ∈ Rnu ,

where usw are the physical switches positions and p are
the three binary inputs entering in the frequency filter from
Section III-C. The input dimension is nu = 6. To simplify the
notation, let us define the matricesG and T to obtain usw(k)
and p(k) from u(k) respectively: i.e. usw(k) = Gu(k) and
p(k) = Tu(k). Similarly, to obtain usw(k − 1) from x(k)
we define matrix W so that usw(k − 1) =Wx(k).

The MPC problem with horizon N ∈ N can be written as

minimize
u(k)

N−1∑

k=0

γk`(x(k)) + γNV (x(N)) (10a)

subject to x(k + 1) = Ax(k) +Bu(k) (10b)
x(0) = x0 (10c)
x(k) ∈ X , u(k) ∈ U(x0), (10d)

where the stage cost is defined combining the THD and the
switching frequency penalties in (6) and (8) respectively

`(x(k)) = ‖Cx(k)‖22 = ‖e(k)‖22 + δ ‖esw(k)‖22 .
The tail cost V (x(N)) is an approximation of the infinite
horizon tail that we will compute in the next section using
approximate dynamic programming (ADP). The matrices A,
B and C define the extended system dynamics and the
output vector; they can be derived directly from the physical
model (1) and from the considerations in Sections III-C
and III-B.

The input constraint set is denoted as

U(x0) = { − Tu(k) ≤ u(k)−Wx(k) ≤ Tu(k), (11a)
‖Tu(k)‖∞ ≤ 1, (11b)

Gu(k) ∈ {−1, 0, 1}3}, (11c)

where constraint (11a) defines the relationship between usw
and p from (7). Constraint (11b) together with (11a) defines
the switching constraints ‖usw(k)− usw(k − 1)‖∞ ≤ 1 im-
posed to avoid a shoot through in the inverter positions
that could damage the components. Finally, (11c) enforces
integrality of the switching positions.

Observe that the controller tuning parameters are δ, which
defines the relative importance of the THD and fsw compo-
nents in the cost function, and r1, r2 that shape the switching
frequency estimator.

Following a receding horizon control strategy, at each
stage k problem (10) is solved, obtaining the optimal se-
quence of u(k) from which only the first input u(0) is
applied to the switches. At the next stage k + 1, given
new information on x0, a new optimization problem is then
solved providing an updated optimal switching sequence, and
so on.

By exploiting the highly parallelizable structure of the
integer problem (10), this formulation has been solved on
a low size FPGA for short horizons of N = 1, N = 2
while keeping the execution time within the sampling time
Ts = 25µs; see [14].

E. Approximate Dynamic Programming
The goal of this section is to compute a value function

approximation V adp for an infinite horizon version of (10).
The function V adp is used as a tail cost in (10).

Let V ∗(z) be the value function evaluated at z, i.e. the
optimal value of the objective of our infinite horizon control
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problem starting at state x = z subject to the system
dynamics (10b) and initial state constraint x(0) = z. The
main idea behind dynamic programming is that the function
V ∗ is the unique solution of the equation

V ∗(z) = min
u∈U(z)

{l(z,u) + γV ∗ (Az +Bu)} ∀z,

known as the Bellman equation. The right-hand side can be
written as monotonic operator on V ∗, usually referred to as
the Bellman operator: V ∗ = T V ∗. Unfortunately, solutions
to the Bellman equation can only be solved analytically
in a limited number of special cases; e.g. when the state
and inputs have small dimensions or when the system is
linear, unconstrained and the cost function is quadratic [17].
For more complicated problems, dynamic programming is
limited by the so-called curse of dimensionality; storage and
computation requirements tend to grow exponentially with
the problem dimensions. Because of the integer switches in
the power converter analyzed in this work, it is intractable
to compute the optimal infinite horizon cost and policy and,
hence, systematic methods for approximating the optimal
value function offline are needed.

Approximate dynamic programming [10] consists of var-
ious techniques for estimating V ∗. The approach developed
in [11] and [12] relaxes the Bellman equation into an
inequality

V adp(z) ≤ min
u∈U(z)

{
l(z,u) + γV adp (Az +Bu)

}
, ∀z,

(12)
or, equivalently, using the Bellman operator: V adp ≤ T V adp.

The set of functions V adp that satisfy the Bellman in-
equality are underestimators of the optimal value function
V ∗; see [12]. The Bellman inequality is therefore a sufficient
condition for underestimation of V ∗. In [12] the authors
show that by iterating inequality (12), the conservatism of
the approximation can be reduced. The iterated Bellman
inequality is defined as V adp ≤ T MV adp, where M > 1 is
an integer defining the number of iterations, or equivalently,
from [12], as V adpi−1 ≤ T V adpi , i = 1, . . . ,M , where V adpi
are the iterates of the value function.

To make the problem tractable, we restrict the iterates
to the finite-dimensional subspace spanned by the basis
functions V (j) defined in [11], [12]

V adpi =

K∑

j=1

αijV
(j), i = 0, . . . ,M − 1. (13)

The coefficients αi are computed by solving a Semidefinite
Program (SDP) [13]. The rewritten iterated Bellman inequal-
ity suggests the following optimization problem for finding
the best underestimator for the value function V ∗

maximize
∫

X
V adp(z)c(dz) (14a)

subject to V adpi−1 (z)≤ min
u∈U(z)

{
l(z,u) + γV adpi (Az +Bu)

}

(14b)
∀z ∈ R6 × {−1, 0, 1}, i = 1, . . . ,M, (14c)

V adp0 = V adpM = V adp, (14d)

where c(·) is a non-negative measure over the state space
that can be viewed as a distribution giving more importance

to regions where we would like a better approximation. On
the chosen subspace (13), the inequality (14b) is convex in
the coefficients αij [12].

Following the approach in [12], we make use of quadratic
candidate functions of the form

V adpi (z) = z>P iz + 2q>i z + ri, i = 0, . . . ,M, (15)

where P i ∈ Snx , qi ∈ Rnx , ri ∈ R, i = 0, . . . ,M .
If we denote µc ∈ Rnx and Σc ∈ Snx

+ as the mean
and the covariance matrix of measure c(·) respectively, by
using candidate functions as in (15) the cost function of
problem (14) becomes

∫

X
V adp(z)c(dz) = Tr (P 0Σc) + 2q>0 µc + r0.

We now focus on rewriting the constraint (14b) as a Linear
Matrix Inequality (LMI) [18]. We first remove the min in
the right-hand side by imposing the constraint for every
admissible u ∈ U(x0) and obtain

V adpi−1 (z) ≤ l(z,u) + γV adpi (Az +Bu),

∀z ∈ R6 × {−1, 0, 1}, ∀u ∈ U(z), i = 1, . . . ,M.
(16)

From [12], we can rewrite (16) as a quadratic form
[
z
1

]>
M i(u)

[
z
1

]
≥ 0, ∀z ∈ R6 × {−1, 0, 1},

∀u ∈ U(z), i = 1, . . . ,M,

(17)

where M i(u) = L+ γGi(u)− Si−1 ∈ Snx . The matrices
Si−1,L and Gi(u) are derived in [14] according to [12].

By noting that the state vector z includes two parts
which can take only a finite set of values — the de-
sired frequency f∗sw and the previous physical input
usw(k − 1) ∈ {−1, 0, 1}— we can explicitly enumerate part
of the state-space and rewrite the quadratic form (17) more
compactly as
[
z̃
1

]>
M̃ i(m)

[
z̃
1

]
≥ 0, ∀z̃ ∈ R8, ∀m ∈M, i = 1, . . . ,M,

(18)
where z̃ is the state vector without the desired frequency and
usw(k−1). Moreover, m := (usw,usw,pr) ∈M are all the
possible combinations of current and previous physical in-
puts satisfying the switching and integrality constraints (11).
The detailed derivation of M̃(m) ∈ S9 can be found in [14].

Using the non-negativity condition of quadratic
forms [13], it is easy to see that (18) holds if and only if
M̃ i(m) is positive semidefinite. Hence, problem (14) can
finally be rewritten as the following SDP

maximize Tr (P 0Σc) + 2q>0 µc + r0

subject to M̃ i(m) � 0, ∀m ∈M, i = 1, . . . ,M

V adp0 = V adpM

P i ∈ Snx , qi ∈ Rnx , ri ∈ R, i = 0, . . . ,M,
(19)

which can be solved efficiently using a standard SDP solver,
e.g. [19]. Once we obtain the solution to (19), we can define
the infinite horizon tail cost to be used in problem (10) as

V adp(z) = z>P 0z + 2q>0 z + r0. (20)

132



Time [ms]
0 5 10 15 20

-1

-0.5

0

0.5

1

(a) Three-phase stator currents (solid lines) with
their references (dashed lines).
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(b) Stator current spectrum.
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(c) Three-phase switching position inputs.

Fig. 2. Simulated waveforms produced by the direct model predictive controller at steady state operation, at full speed and rated torque. Horizon of
N = 1 is used. The switching frequency is approximately 300Hz and the current THD is 5.24%.

IV. SIMULATION RESULTS

We run simulations on the model from [6] of a neu-
tral point clamped voltage source inverter connected with
a medium-voltage induction machine and a constant me-
chanical load. The simulations are run in MATLAB, using
an idealized model with the semiconductors switching in-
stantaneously. This is motivated by the fact that, using a
similar model, previous simulations [20] showed a very close
match with the experimental results in [21]. The infinite
horizon estimation SDP (19) is formulated in MATLAB
using YALMIP [22] and solved offline using MOSEK [19].
The resulting integer optimization problems are solved using
Gurobi Optimizer [23].

A. Steady State Performance
The steady-state performance of the system with the

proposed method is shown in Figure 2. The discount factor is
chosen as γ = 0.95, the switching frequency filter parameters
as r1 = r2 = 800 in order to get a smooth estimate.
The desired switching frequency is set to 300Hz and the
weighting δ is chosen accordingly. The simulation results
with N = 1 are shown in Figure 2 in the (pu) system.

For comparison, we simulate the drive system also with
the controller discussed in [6] denoted as DMPC tuned in
order to have the same switching frequency by adjusting the
weighting parameter λu.

TABLE I
SIMULATION RESULTS WITH APPROXIMATE DYNAMIC PROGRAMMING

APPROACH AND WITH DMPC FROM [7]

ADP DMPC [7]

δ THD [%] λu THD [%]

N = 1 4 5.24 0.00235 5.44
N = 2 5.1 5.13 0.00690 5.43
N = 3 5.5 5.10 0.01350 5.39
N = 10 10 4.80 0.10200 5.29

Numerical results with both approaches are presented in
Table I. Our method, with a horizon of N = 1 provides
at the same time a THD improvement over the direct MPC
formulation in [6] with N = 10 and a drastically better

numerical speed. Moreover, we also perform a comparison
with longer horizons N = 2, N = 3 and N = 10. The results
show that, if our method were applied on the drive system
with horizon N = 3, it would show a clear improvement over
the DMPC technique leading to a THD of 5.10%. Horizon
N = 10 would give an even greater reduction in THD until
4.80%. Furthermore, it is important to underline that the
method we propose is the only method available exhibiting
this performance that can produce integer optimal solutions
to this problem in 25µs sampling time.

B. Performance During Transients

One of the main advantages of direct MPC is the fast
transient response [6]. We simulated the system with the
same tuning parameters as in the steady state benchmarks.
At nominal speed, reference torque steps are imposed, see
Figure 3b. These steps are translated into different current
references to track, as shown in Figure 3a, while the com-
puted inputs are shown in 3c.

The torque step from 1 to 0 presents an extremely short
settling time of 0.35ms similar to deadbeat control ap-
proaches [24]. This is achieved by inverting the voltage
applied to the load. Since we prohibited switchings between
−1 and 1 in (11a) and (11b), the voltage inversion is
performed in 2Ts via an intermediate zero switching position.

Switching from 0 to 1 torque produces much slower
response time of approximately 3.5ms. This is due to
the limited available voltage in the three-phase admissible
switching positions. As shown in Figure 3c, during the
second switching at time 20ms, the last two phases inputs
saturate to values +1 and −1 respectively for the majority of
the transient providing the maximum available voltage that
could steer the currents to the desired direction.

We simulate the transient responses also for horizon
N = 10 obtaining nearly identical settling times. This is
because the benefit of longer prediction is reduced by the
saturation of the inputs during the transients.

These transient results match the simulations of DMPC
method from [6] in terms of settling time. This shows that
our method does not slow down the fast dynamical behavior
during transients typical of direct current MPC.
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(a) Three-phase stator currents (solid lines) with
their references (dashed lines).
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(b) Simulated (solid line) and reference (dashed
line) torque.
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(c) Three-phase switching position inputs.

Fig. 3. Reference torque steps produced by the direct model predictive controller with horizon N = 1.

Finally, the proposed approach shows far superior perfor-
mance than offline methods for open-loop switch sequence
computations like Optimized Pulse Patterns (OPPs) [25].

V. CONCLUSION AND FUTURE WORK

This work proposes a new computationally efficient direct
model predictive control (MPC) scheme for current refer-
ence tracking in power converters. We extended problem
formulation in [6] and [7] in order to include a direct
switching frequency estimator in the system state. To reduce
the horizon length and decrease the computational burden
while preserving good control performances, we estimated
the infinite horizon tail cost of the MPC problem formulation
using approximate dynamic programming (ADP).

Steady state simulation results show that with our method
requiring short horizons and extremely inexpensive compu-
tations, it is possible to obtain better performance than the
direct MPC formulation in [6] with long horizons. This is due
to the predictive behavior of the tail cost function obtained
with ADP. We also performed transient simulations where the
proposed approach exhibits the very fast dynamic response
typical of the direct MPC [6].

This method has also been implemented in [14] on a small
size FPGA running comfortably within 25µs.
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